Ex7122: Transition between energy levels due to wall displacement

Submitted by: Michael Pukshanski, Eyal Shoham, Lior Weitzhandler

The problem:

A particle with mass M is set in one dimensional box $x \in[0, a]$ with length a. At time $t=-\infty$ we prepare the particle at ground state $n=1$ of the box. Displacement of the left wall is described by the step function $x=\epsilon(t)$.
The velocity in which we move the wall is $\dot{\epsilon}=\frac{\epsilon_{0}}{\sqrt{2 \pi} \tau_{0}} \exp \left[-\frac{1}{2}\left(\frac{t}{\tau_{0}}\right)^{2}\right]$.
We measure the energy level of the particle at time $t=\infty$.
(1) Calculate the perturbation element $\dot{\epsilon} W_{n .1}$ for transitions of adiabatic states.
(2) Write the condition for the adiabatic approximation validity.
(3) Assume a small displacement $\epsilon_{0} \ll a$ of the wall. Calculate the first order, using the perturbation theory (in the adiabatic basis), the probability $P(n)$ to find the particle in the exited level n.

We change the protocol as follows:

- First we move the left wall small displacement $\epsilon_{0} \ll a$.
- We move the right wall in perfectly adiabatically formation to the point $x=b$.
- The displacement of the right wall is described by $x=a+v_{0} t$ so the total time for the process is $t_{0}=(b-a) / v_{0}$.
- Finally we return the left wall to it's initial place.
(4) Find the probability $P(n)$ for the new protocol.

Guidance: the perturbation element for infinitesimal displacement of the wall is $\langle\varphi| V|\psi\rangle=-\left(\frac{\epsilon}{2 M}\right)\left[\frac{\partial \varphi}{\partial x}\right]\left[\frac{\partial \psi}{\partial x}\right]$.
The partial derivative are calculated in the point the wall is placed.
Express the results with the given parameters ($M, a, b, v_{0}, \epsilon_{0}, \tau_{0}$).
Write the result of section 3 in the form $P(n)=|A(a)|^{2}$.
Express the result of section 4 with the function $A(\cdot)$ and the given parameters.

The solution:

(1) According to time dependent perturbation theory we can write, in the adiabatic basis, the perturbation element as follows:

$$
W_{n m}=i<n \left\lvert\, \frac{\partial m}{\partial x}>=\frac{-i V_{n m}}{E_{n}-E_{m}}\right.
$$

We can use the equation in the guidance:

$$
V_{n m}=\left.\left.\frac{1}{2 M}\left(\frac{\partial \varphi_{n}}{\partial x}\right)\right|_{x=0}\left(\frac{\partial \psi_{m}}{\partial x}\right)\right|_{x=0}
$$

And for a particle in a one-dimensional box:

$$
\varphi_{n}=\sqrt{\frac{2}{a}} \cdot \sin \left(\frac{\pi n x}{a}\right)
$$

With the energies:

$$
E_{n}=\frac{\pi^{2} n^{2}}{2 M a^{2}}
$$

Hence:

$$
\left.\left(\frac{\partial \varphi}{\partial x}\right)\right|_{x=0}=\sqrt{\frac{2}{a}} \cdot \frac{\pi \cdot n}{a}
$$

Therefore one gets:

$$
\begin{aligned}
& V_{n m}=\frac{\pi^{2} \cdot n m}{M a^{3}} \\
& W_{n m}=\frac{-i \pi^{2} m n}{M a^{3} \cdot\left(E_{n}-E_{m}\right)}
\end{aligned}
$$

And we get the result:

$$
W_{n 1}=-\frac{2 i \cdot n}{a\left(n^{2}-1\right)}
$$

(2) The adiabatic condition is given by:

$$
\dot{X} \ll \frac{\Delta^{2}}{|V|}
$$

One can observe that the energy level spacing in one dimensional box is given by:

$$
\Delta=\frac{\pi \cdot v_{E}}{L}
$$

For a wall displacement we have:

$$
|V|=\frac{M v_{E}^{2}}{L}
$$

Then:

$$
\dot{X} \ll \frac{\pi^{2}}{M L}
$$

(3) The leading order of the transition probability from the ground state to state n is given by:

$$
P_{t}(n \mid 1)=\left|W_{n 1}\right|^{2} \times|F T[\dot{\epsilon}]|^{2}
$$

Which results in:

$$
P(n)=\left(\frac{2 n}{a\left(n^{2}-1\right)}\right)^{2} \epsilon_{0}^{2} e^{-\left(w_{n} \tau_{0}\right)^{2}}
$$

Defining:

$$
w_{n} \equiv E_{n}-E_{1}
$$

(4) The leading order of the non-adiabatic transition probability is:

$$
P_{t}(n \mid 1)=\left|\int_{0}^{t} \frac{V_{n 1}}{E_{n}-E_{1}} e^{-i\left(\Phi_{n}-\Phi_{1}\right)} \dot{X} d t\right|^{2}
$$

Where:

$$
\Phi_{n}(t)=\int_{0}^{t} E_{n} d t^{\prime}
$$

We notice that \dot{X} isn't zero only when the right wall moves, so we can divide the integral into two integrals as follows:

$$
P_{t}(n \mid 1)=\left|\int_{\text {part } 1} W_{n 1} e^{-i\left(\Phi_{n}^{(1)}\right)} \dot{X} d t^{\prime}-\int_{\text {part } 2} W_{n 1} e^{-i\left(\Phi_{n}^{(2)}\right)} \dot{X} d t^{\prime}\right|^{2}
$$

The velocity in the second part is in the opposite direction which results in a minus sign. Also, ω_{n} depends on X so the phase will be different for each integral. The phase integral limits will be from 0 to the current time and will be divided into 3 intervals: left wall movement, adiabatic right wall movement and left wall movement.
The expression for the frequency is:

$$
\omega_{n}(X)=\frac{\pi^{2}\left(n^{2}-1\right)}{2 M X^{2}}
$$

We can see that for the left integral the phase will be:

$$
\Phi_{n}^{(1)}=\int_{0}^{t} \omega_{n}(a) d t=\omega_{n}(a) t
$$

The second phase includes the phase accumulated during the adiabatic process.

$$
\Phi_{n}^{(2)}=\int_{0}^{t} \omega_{n}(a) d t+\int_{\text {adiabatic }} \omega_{n}(X) d t
$$

Calculating the adiabatic part as follows:

$$
\Phi_{\text {adiabatic }}=\int_{a}^{b} \frac{\pi^{2}\left(n^{2}-1\right)}{2 M X^{2}} \frac{d t}{d X} d X=\frac{1}{v_{0}} \frac{\pi^{2}\left(n^{2}-1\right)}{2 M}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

Finally, the probability is:

$$
P_{t}(n \mid 1)=\left|A(a)-e^{-i \Phi_{\text {adiabatic }}} A(b)\right|^{2}
$$

Defining:

$$
A(x) \equiv 2 \frac{\epsilon_{0}}{x}\left(\frac{n}{n^{2}-1}\right) e^{-\frac{1}{2}\left(\tau_{0} \omega_{n}(x)\right)^{2}}
$$

