Ex7122: Transition between energy levels due to wall displacement
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The problem:

A particle with mass M is set in one dimensional box x € [0, a] with length a. At time ¢t = —oo we
prepare the particle at ground state n = 1 of the box. Displacement of the left wall is described by
the step function x = €(t).
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The velocity in which we move the wall is ¢ = \/%TO exp[—3(7)°]-

We measure the energy level of the particle at time ¢ = oc.

1) Calculate the perturbation element éW,, ; for transitions of adiabatic states.

(2) Write the condition for the adiabatic approximation validity.

(3) Assume a small displacement ¢y << a of the wall. Calculate the first order, using the pertur-
bation theory (in the adiabatic basis), the probability P(n) to find the particle in the exited level
n

We change the protocol as follows:

- First we move the left wall small displacement ¢y << a.

- We move the right wall in perfectly adiabatically formation to the point z = b.

- The displacement of the right wall is described by x = a + vgt so the total time for the process is
to = (b— a)/vg.

- Finally we return the left wall to it’s initial place.

(4) Find the probability P(n) for the new protocol.

Guidance: the perturbation element for infinitesimal displacement of the wall is
< o[Vl >= —(35)[521(34]-

The partial derivative are calculated in the point the wall is placed.

Express the results with the given parameters (M, a, b, vy, €9, 70).

Write the result of section 3 in the form P(n) = |A(a)|?.

Express the result of section 4 with the function A(-) and the given parameters.

The solution:

(1) According to time dependent perturbation theory we can write, in the adiabatic basis, the
perturbation element as follows:
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We can use the equation in the guidance:
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And for a particle in a one-dimensional box:
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With the energies:
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Hence:

(%) _\/E.W'n
0z " V¢ a

Therefore one gets:
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And we get the result:
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(2) The adiabatic condition is given by:
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One can observe that the energy level spacing in one dimensional box is given by:
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For a wall displacement we have:
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Then:
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(3) The leading order of the transition probability from the ground state to state n is given by:
Py(n|1) = W [ x |FT[€]?

Which results in:
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Defining;:
wn, = FE, — FE;

(4) The leading order of the non-adiabatic transition probability is:
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Where:
t
o, (t) = / E,dt’
0

We notice that X isn't zero only when the right wall moves, so we can divide the integral into two
integrals as follows:
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The velocity in the second part is in the opposite direction which results in a minus sign. Also, w,
depends on X so the phase will be different for each integral. The phase integral limits will be from
0 to the current time and will be divided into 3 intervals: left wall movement, adiabatic right wall
movement and left wall movement.
The expression for the frequency is:
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We can see that for the left integral the phase will be:

t
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The second phase includes the phase accumulated during the adiabatic process.

t
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Calculating the adiabatic part as follows:
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Finally, the probability is:
Pt(n|1) — |A(a) _ e*%’%dmbch(b)’Z

Defining:
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