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The problem:

A particle with mass M is set in one dimensional box x ∈ [0, a] with length a. At time t = −∞ we
prepare the particle at ground state n = 1 of the box. Displacement of the left wall is described by
the step function x = ε(t).
The velocity in which we move the wall is ε̇ = ε0√

2πτ0
exp[−1

2( t
τ0

)2].

We measure the energy level of the particle at time t =∞.

(1) Calculate the perturbation element ε̇Wn.1 for transitions of adiabatic states.
(2) Write the condition for the adiabatic approximation validity.
(3) Assume a small displacement ε0 << a of the wall. Calculate the first order, using the pertur-
bation theory (in the adiabatic basis), the probability P (n) to find the particle in the exited level
n.

We change the protocol as follows:
- First we move the left wall small displacement ε0 << a.
- We move the right wall in perfectly adiabatically formation to the point x = b.
- The displacement of the right wall is described by x = a+ v0t so the total time for the process is
t0 = (b− a)/v0.
- Finally we return the left wall to it’s initial place.

(4) Find the probability P (n) for the new protocol.

Guidance: the perturbation element for infinitesimal displacement of the wall is
< ϕ|V |ψ >= −( ε

2M )[∂ϕ∂x ][∂ψ∂x ].
The partial derivative are calculated in the point the wall is placed.
Express the results with the given parameters (M,a, b, v0, ε0, τ0).
Write the result of section 3 in the form P (n) = |A(a)|2.
Express the result of section 4 with the function A(·) and the given parameters.

The solution:

(1) According to time dependent perturbation theory we can write, in the adiabatic basis, the
perturbation element as follows:

Wnm = i < n|∂m
∂x

>=
−iVnm
En − Em

We can use the equation in the guidance:

Vnm =
1

2M
(
∂ϕn
∂x

)|x=0(
∂ψm
∂x

)|x=0

And for a particle in a one-dimensional box:

ϕn =

√
2

a
· sin(

πnx

a
)

With the energies:

En =
π2n2

2Ma2

1



Hence:

(
∂ϕ

∂x
)|x=0 =

√
2

a
· π · n

a

Therefore one gets:

Vnm =
π2 · nm
Ma3

Wnm =
−iπ2mn

Ma3 · (En − Em)

And we get the result:

Wn1 = − 2i · n
a(n2 − 1)

(2) The adiabatic condition is given by:

Ẋ <<
∆2

|V |

One can observe that the energy level spacing in one dimensional box is given by:

∆ =
π · vE
L

For a wall displacement we have:

|V | =
Mv2

E

L

Then:

Ẋ <<
π2

ML

(3) The leading order of the transition probability from the ground state to state n is given by:

Pt(n|1) = |Wn1|2 × |FT [ε̇]|2

Which results in:

P (n) = (
2n

a(n2 − 1)
)2ε20e

−(wnτ0)2

Defining:

wn ≡ En − E1

(4) The leading order of the non-adiabatic transition probability is:

Pt(n|1) = |
∫ t

0

Vn1

En − E1
e−i(Φn−Φ1)Ẋdt|2
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Where:

Φn(t) =

∫ t

0
Endt

′

We notice that Ẋ isn't zero only when the right wall moves, so we can divide the integral into two
integrals as follows:

Pt(n|1) = |
∫
part1

Wn1e
−i(Φ(1)

n )Ẋdt′ −
∫
part2

Wn1e
−i(Φ(2)

n )Ẋdt′|2

The velocity in the second part is in the opposite direction which results in a minus sign. Also, ωn
depends on X so the phase will be different for each integral. The phase integral limits will be from
0 to the current time and will be divided into 3 intervals: left wall movement, adiabatic right wall
movement and left wall movement.
The expression for the frequency is:

ωn(X) =
π2(n2 − 1)

2MX2

We can see that for the left integral the phase will be:

Φ(1)
n =

∫ t

0
ωn(a)dt = ωn(a)t

The second phase includes the phase accumulated during the adiabatic process.

Φ(2)
n =

∫ t

0
ωn(a)dt+

∫
adiabatic

ωn(X)dt

Calculating the adiabatic part as follows:

Φadiabatic =

∫ b

a

π2(n2 − 1)

2MX2

dt

dX
dX =

1

v0

π2(n2 − 1)

2M
(
1

a
− 1

b
)

Finally, the probability is:

Pt(n|1) = |A(a)− e−iΦadiabaticA(b)|2

Defining:

A(x) ≡ 2
ε0
x

(
n

n2 − 1
)e−

1
2

(τ0ωn(x))2
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