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The problem:

A particle with mass M in 1D box x ∈ [0, a] with length a.
At time t = −∞ the particle is in ground state.
The movment of the wall is x = −ε(t).
The speed in which the wall is moving is ε̇ = ε0√

2πτ0
exp[−1

2( t
τ0

)2].
You may assume that the displacement of the wall is small so that the perturbation is

(*)< ϕ|V |ψ >= ∓( ε
2M )[∂ϕ∂x ][∂ψ∂x ].

- The derivatives are calculated at the point where the wall is located.
- The sign +/- refer to the case of enlargement/reduction (respectively) of the box’s length.

(1) Find the probability P (n),at time t = ∞, to find the particle at an excited
energy level n for abrupt displacement.
(2) Using first order Perturbation theory, find the probability P (n) for finite displacement.
(3) Answer paragraph (2) only this time both of the walls are displaced outward in the next fashion
[−ε(t), a+ ε(t)].
(4) Define two different conditions that can ensure the Validity of the calculation of first order
Perturbation theory.
-Small displacement of the wall (small ε0) or a slow movment of the wall (large τ0).
(5) Write the condition needed for the process to be adiabatic and note if the adiabatic area is
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contained within the validity area of the Perturbation theory.

The solution:

(1) For 1D potential well the energy levels and wave function are:

En = π2

2Ma2n
2 , ψn =

√
2
asin(πnxa ).

The probability of a particle to pass from energy level m to evergy level n is:

P (n|m) = |Vnm|2
(En−Em)2

, for n 6= 1.

using equation (*) we see that :

Vn1 = −ε(t)π2

Ma3 n.

the overall displecment of the wall is
∞∫
−∞

ε̇(t)dt = ε0√
2πτ0

∞∫
−∞

e
− 1

2
( t

τ0
)2
dt = ε0

thus at t = ∞

Vn1 = −ε0π2

Ma3 n.

In our case

P (n|1) = |Vn1|2
(En−E1)2

En − E1 = π2

2Ma2 (n2 − 1),

Therefore

P0(n) = P (n|1) = 4 ε0
a2 ( n

n2−1
)2 for n 6= 1.

(2) using the formula for the transition probability:

P (n) = |wnm|2|FT (f(t))|2

|wn1| = π2

Ma3n

FT (f(t)) = FT (ε(t)) =
∞∫
−∞

ε(t)e−iwntdt = ε(t)e−iwnt

iwnt
|∞−∞ + 1

iwn

∞∫
−∞

ε̇(t)−iwnt

where :

wn = En − E1

the first term vanishes (ε(−∞) = 0) and from sloving the integral by parts we get:

ε0√
2πτ0

∞∫
−∞

e
− 1

2
( t

τ0
)2
e−iwntdt = ε0√

2πτ0
e− (τ0wn)2

2

∞∫
−∞

e
− (t+iwnτ2

0 )2

2τ2
0 dt = ε0e

− (τ0wn)2

2

so finaly we get:

FT (ε(t)) = 1
iwn

ε0e
− (τ0wn)2

2

P (n) = ε20|wn1|2
w2

n
e−(τ0wn)2 = P0(n)e−(τ0wn)2
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(3) using (*) on both walls we get:

Vn1 = −ε(t)π2

Ma3 n+ −ε(t)π2

Ma3 n(−1)n = −2ε(t) π2

Ma3n

n=3,5,7...

from here it is easy to see that by following the same prosses as in the last section we will get:

P ‘(n) = 4P (n) ,for n=3,5,7...

P ‘(n) = 0 , for n=2,4,6...

(4) in order for the perturbation theory to be valid P(n) has to be small ,from here we get the
conditions:

ε0 << a

τ0wn >> 1 ⇒ τ0 >> ma2

(5) the adiabatic condition is :

ε̇ << 42

|w|

|w| = 1
maKnKm = m

a V
2
E

4 = VE4p = π
aVE , (π ' 1)

where we have used the aproximations:

Kn ' Km ' KE = mVE

⇒ ε̇ << 1
ma

and substituting the expression for ε̇(t) we get:

ε0 <<
1
maτ0

which is contained within the validity area of the Perturbation theory
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