E712: Transitions between energy levels due to wall movment

Submitted by: Ofek Asban and Yuval Shilon

The problem:

A particle with mass M in 1 D box $x \in[0, a]$ with length a.
At time $t=-\infty$ the particle is in ground state.
The movment of the wall is $x=-\epsilon(t)$.
The speed in which the wall is moving is $\dot{\epsilon}=\frac{\epsilon_{0}}{\sqrt{2 \pi} \tau_{0}} \exp \left[-\frac{1}{2}\left(\frac{t}{\tau_{0}}\right)^{2}\right]$.
You may assume that the displacement of the wall is small so that the perturbation is
$\left.\left({ }^{*}\right)<\varphi|V| \psi\right\rangle=\mp\left(\frac{\epsilon}{2 M}\right)\left[\frac{\partial \varphi}{\partial x}\right]\left[\frac{\partial \psi}{\partial x}\right]$.

- The derivatives are calculated at the point where the wall is located.
- The sign +/- refer to the case of enlargement/reduction (respectively) of the box's length.
(1) Find the probability $P(n)$,at time $t=\infty$, to find the particle at an excited energy level n for abrupt displacement.
(2) Using first order Perturbation theory, find the probability $P(n)$ for finite displacement.
(3) Answer paragraph (2) only this time both of the walls are displaced outward in the next fashion $[-\epsilon(t), a+\epsilon(t)]$.
(4) Define two different conditions that can ensure the Validity of the calculation of first order Perturbation theory.
-Small displacement of the wall (small ϵ_{0}) or a slow movment of the wall (large τ_{0}).
(5) Write the condition needed for the process to be adiabatic and note if the adiabatic area is
contained within the validity area of the Perturbation theory.

The solution:

(1) For 1D potential well the energy levels and wave function are:
$E_{n}=\frac{\pi^{2}}{2 M a^{2}} n^{2}, \psi_{n}=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right)$.
The probability of a particle to pass from energy level m to evergy level n is:
$P(n \mid m)=\frac{\left|V_{n m}\right|^{2}}{\left(E_{n}-E_{m}\right)^{2}}$, for $n \neq 1$.
using equation $\left({ }^{*}\right)$ we see that :
$V_{n 1}=\frac{-\epsilon(t) \pi^{2}}{M a^{3}} n$.
the overall displecment of the wall is
$\int_{-\infty}^{\infty} \dot{\epsilon}(t) d t=\frac{\epsilon_{0}}{\sqrt{2 \pi} \tau_{0}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{t}{\tau_{0}}\right)^{2}} d t=\epsilon_{0}$
thus at $t=\infty$
$V_{n 1}=\frac{-\epsilon_{0} \pi^{2}}{M a^{3}} n$.
In our case
$P(n \mid 1)=\frac{\left|V_{n 1}\right|^{2}}{\left(E_{n}-E_{1}\right)^{2}}$
$E_{n}-E_{1}=\frac{\pi^{2}}{2 M a^{2}}\left(n^{2}-1\right)$,
Therefore
$P_{0}(n)=P(n \mid 1)=4 \frac{\epsilon_{0}}{a^{2}}\left(\frac{n}{n^{2}-1}\right)^{2}$ for $n \neq 1$.
(2) using the formula for the transition probability:
$P(n)=\left|w_{n m}\right|^{2}|F T(f(t))|^{2}$
$\left|w_{n 1}\right|=\frac{\pi^{2}}{M a^{3}} n$
$F T(f(t))=F T(\epsilon(t))=\int_{-\infty}^{\infty} \epsilon(t) e^{-i w_{n} t} d t=\left.\frac{\epsilon(t) e^{-i w_{n} t}}{i w_{n} t}\right|_{-\infty} ^{\infty}+\frac{1}{i w_{n}} \int_{-\infty}^{\infty} \dot{\epsilon}(t)^{-i w_{n} t}$
where :
$\mathrm{w}_{n}=E_{n}-E_{1}$
the first term vanishes $(\epsilon(-\infty)=0)$ and from sloving the integral by parts we get:
$\frac{\epsilon_{0}}{\sqrt{2 \pi \tau_{0}}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{t}{\tau_{0}}\right)^{2}} e^{-i w_{n} t} d t=\frac{\epsilon_{0}}{\sqrt{2 \pi} \tau_{0}} e^{-\frac{\left(\tau_{0} w_{n}\right)^{2}}{2}} \int_{-\infty}^{\infty} e^{-\frac{\left(t+i w_{n} \tau_{2}^{2}\right)^{2}}{2 \tau_{0}^{2}}} d t=\epsilon_{0} e^{-\frac{\left(\tau_{0} w_{n}\right)^{2}}{2}}$
so finaly we get:
$F T(\epsilon(t))=\frac{1}{i w_{n}} \epsilon_{0} e^{-\frac{\left(\tau_{0} w_{n}\right)^{2}}{2}}$
$P(n)=\frac{\epsilon_{0}^{2}\left|w_{n 1}\right|^{2}}{w_{n}^{2}} e^{-\left(\tau_{0} w_{n}\right)^{2}}=P_{0}(n) e^{-\left(\tau_{0} w_{n}\right)^{2}}$
(3) using $\left(^{*}\right)$ on both walls we get:
$V_{n 1}=\frac{-\epsilon(t) \pi^{2}}{M a^{3}} n+\frac{-\epsilon(t) \pi^{2}}{M a^{3}} n(-1)^{n}=-2 \epsilon(t) \frac{\pi^{2}}{M a^{3}} n$
$\mathrm{n}=3,5,7 \ldots$
from here it is easy to see that by following the same prosses as in the last section we will get:
$P^{\prime}(n)=4 P(n)$, for $\mathrm{n}=3,5,7 \ldots$
$P^{\prime}(n)=0$, for $\mathrm{n}=2,4,6 \ldots$
(4) in order for the perturbation theory to be valid $\mathrm{P}(\mathrm{n})$ has to be small ,from here we get the conditions:
$\epsilon_{0} \ll a$
$\tau_{0} w_{n} \gg 1 \Rightarrow \tau_{0} \gg m a^{2}$
(5) the adiabatic condition is:
$\dot{\epsilon} \ll \frac{\triangle^{2}}{|w|}$
$|w|=\frac{1}{m a} K_{n} K_{m}=\frac{m}{a} V_{E}^{2}$
$\triangle=V_{E} \triangle p=\frac{\pi}{a} V_{E},(\pi \simeq 1)$
where we have used the aproximations:
$K_{n} \simeq K_{m} \simeq K_{E}=m V_{E}$
$\Rightarrow \dot{\epsilon} \ll \frac{1}{m a}$
and substituting the expression for $\dot{\epsilon}(t)$ we get:
$\epsilon_{0} \ll \frac{1}{m a} \tau_{0}$
which is contained within the validity area of the Perturbation theory

