Ex6511: Finding energy eigenstates in a semi-classical approximation
Submitted by: Roni Ben-Maimon and Omri Davidson
The problem:

A vparticle of mass M is free to move in 1 Dimension. Using the WKB approximation find the
energy eigenstates F, of the particle in the following cases:

(1) The potential is V(x) = c|x|* where a > 0. use the following notation: B(a) = fol V1 —zedz.
(2) A potential well in the interval [—a, a] with a potential floor of V(z) = Vysign(x). It is enough
to write the answer for energy levels above Vj.

(3) Bonus question: in section (2) calculate the eigenenergies using perturbation theory up to second
order.

The solution:

(1) In the WKB approximation bounded states satisfy the condition:
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The turning points are:
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And the momentum:

p(z) =+2M(E —V(x)) = \/2M(E — c|z|*)

Calculating the integral:
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So we get:
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Solving for Fp:
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(2) In the case of a potential well the walls are "hard” therefore the equation for the bound energies
is:
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Solving the equation for E gives:
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where €, = {17

(3) We look at a symmetrical potential well with a perturbation of V(x) = Vpsign(z).
The eigenstates of the unperturbated Hamiltonian:
odd n: ¥,, = ﬁ cos k,x

even n: ¥, = ﬁ sin kpx
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where: k, = 57 and the energy is €, = {312

Finding the matrix elements of the perturbation:
On the diagonal:
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because cos? (k,z)V (x) and sin? (k,x)V (x) are odd functions.
Therfore:

Bl =V =0

Off diagonal elements:
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m = odd,n = odd : a/ cos (kmx) cos (kpx)V (z)dz =0
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m = even,n = even : — / sin (k) sin (kpz)V(z)dr =0
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Because the integrands in both integrals are odd functions.
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We notice that for x = a the expression equals 0 because (k,+tk;,)a = 21—;17? for an integer [.

So we are left with:
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For m = even,n = odd, we get the same result but with a replacement of m with n:
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The second order correction of the energy:
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For the symmetrical states (odd n) we get:
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For the antisymmetrical states (even n) we get:
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Therfore, we
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It is clear that the most significant contribution to the sum is when m =n £ 1.

calculate the contribution of these elements for Cs(n) and Cgs(n) in the limit n — oo:

For Cs(n):
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In order to improve the accuracy, we approximate the sums using Matlab for different energy levels

The results are shown in the following graph:
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We get Cs(n) = —1 and Cys(n) = 2 for all values of n.
The energy up to second order perturbation is:
for the symmetrical states:

for the antisymmetrical states:
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Comparing the WKB approximation to perturbation theory, we see that it is the algebraic average
of the symmetric and antisymmetric states.



