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The problem:

A particle of mass M is free to move in 1 Dimension. Using the WKB approximation find the
energy eigenstates En of the particle in the following cases:

(1) The potential is V (x) = c|x|α where α > 0. use the following notation: B(α) =
∫ 1
0

√
1− xαdx.

(2) A potential well in the interval [−a, a] with a potential floor of V (x) = V0sign(x). It is enough
to write the answer for energy levels above V0.
(3) Bonus question: in section (2) calculate the eigenenergies using perturbation theory up to second
order.

The solution:

(1) In the WKB approximation bounded states satisfy the condition:∫ x2

x1

p(x)dx = π(n+
1

2
)

The turning points are:

x1 = −
(E
c

) 1
α

x2 =
(E
c

) 1
α

And the momentum:

p(x) =
√

2M(E − V (x)) =
√

2M(E − c|x|α)

Calculating the integral:∫ (E
c
)
1
α

−(E
c
)
1
α

√
2M(E − c|x|α)dx =

√
2ME

[ ∫ 0

−(E
c
)
1
α

√
(1− c

E
(−x)α)dx+

∫ (E
c
)
1
α

0

√
1− c

E
xαdx

]

= 2B(α)
(E
c

) 1
α
√

2ME

So we get:

2B(α)
(E
c

) 1
α
√

2ME = π(n+
1

2
)

Solving for En:

En =

[
π(n+ 1

2)
√

8MB(α)
c

1
α

] 2α
α+2

(2) In the case of a potential well the walls are ”hard” therefore the equation for the bound energies
is:

∫ x2

x1

p(x)dx = πn

1



∫ a

−a

√
2M(E − V (x))dx =

∫ 0

−a

√
2M(E + V0)dx+

∫ a

0

√
2M(E − V0)dx

a
√

2M(E + V0) + a
√

(2M(E − V0) = πn

Solving the equation for E gives:

En = εn +
V 2
0

4εn

where εn = π2n2

8Ma2

(3) We look at a symmetrical potential well with a perturbation of V (x) = V0sign(x).
The eigenstates of the unperturbated Hamiltonian:
odd n: Ψn = 1√

a
cos knx

even n: Ψn = 1√
a

sin knx

where: kn = πn
2a and the energy is εn = π2n2

8Ma2

Finding the matrix elements of the perturbation:
On the diagonal:

Vnn = 〈n|v|n〉 =
1

a

∫ a

−a
cos2 (knx)V (x)dx =

1

a

∫ a

−a
sin2 (knx)V (x)dx = 0

because cos2 (knx)V (x) and sin2 (knx)V (x) are odd functions.
Therfore:

E[1]
n = Vnn = 0

Off diagonal elements:

m = odd, n = odd :
1

a

∫ a

−a
cos (kmx) cos (knx)V (x)dx = 0

m = even, n = even :
1

a

∫ a

−a
sin (kmx) sin (knx)V (x)dx = 0

Because the integrands in both integrals are odd functions.

m = odd, n = even :
1

a

∫ a

−a
cos (kmx) sin (knx)V (x)dx =

=
V0
2a

[
−
∫ 0

−a
sin ((kn + km)x) + sin ((kn − km)x)dx+

∫ a

0
sin ((kn + km)x) + sin ((kn − km)x)dx

]
=
−V0
a

[
cos ((kn + km)x)

kn + km
+

cos ((kn − km)x)

kn − km

]a
0

We notice that for x = a the expression equals 0 because (kn±km)a = 2l+1
2 π for an integer l.

So we are left with:

Vmn =
2V0
π

( 1

n+m
+

1

n−m

)
=

4V0
π

( n

n2 −m2

)
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For m = even, n = odd, we get the same result but with a replacement of m with n:

Vmn =
2V0
π

( 1

n+m
+

1

m− n

)
=

4V0
π

( m

m2 − n2
)

The second order correction of the energy:

E[2]
n =

∑
m(6=n)

|Vmn|2

εn − εm

For the symmetrical states (odd n) we get:

E[2]
n =

∑
m(6=n)

( 4V0m

π(m2 − n2)

)2 8Ma2

π2(n2 −m2)
=
V 2
0

εn

16

π2

∞∑
l=1

n2(2l)2

(n2 − (2l)2)3
=
V 2
0

εn
Cs(n)

For the antisymmetrical states (even n) we get:

E[2]
n =

∑
m(6=n)

( 4V0n

π(n2 −m2)

)2 8Ma2

π2(n2 −m2)
=
V 2
0

εn

16

π2

∞∑
l=0

n4

(n2 − (2l + 1)2)3
=
V 2
0

εn
Cas(n)

It is clear that the most significant contribution to the sum is when m = n± 1. Therfore, we
calculate the contribution of these elements for Cs(n) and Cas(n) in the limit n→∞:
For Cs(n):

lim
n→∞

16

π2

( n2(n+ 1)2

(n2 − (n+ 1)2)3
+

n2(n− 1)2

(n2 − (n− 1)2)3

)
∼= −0.203

For Cas(n):

lim
n→∞

16

π2

( n4

(n2 − (n+ 1)2)3
+

n4

(n2 − (n− 1)2)3

)
∼= 0.608

In order to improve the accuracy, we approximate the sums using Matlab for different energy levels.
The results are shown in the following graph:
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We get Cs(n) = −1
4 and Cas(n) = 3

4 for all values of n.
The energy up to second order perturbation is:
for the symmetrical states:

En = εn −
V 2
0

4εn

for the antisymmetrical states:

En = εn +
3V 2

0

4εn

Comparing the WKB approximation to perturbation theory, we see that it is the algebraic average
of the symmetric and antisymmetric states.
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