E621: Stark effect in Hydrogen atom

Submitted by: Naama Shukrun, Ella Yonai

The problem:

The electron in the Hydrogen atom is a particle of mass M and charge e with potential of $\mathrm{V}(\mathrm{r})=-\frac{r}{\alpha}$.
Assume that we can neglect the probability to find
the particle in an energy level $\mathrm{n}_{\mathrm{c}} 2$ so we have a five dimensional space for
the particle's states, two spherical and three polaric orbitals so the basis for
the representation is : $|s 1\rangle,|s 2\rangle,|p x\rangle,|p y\rangle,|p z\rangle$.
We also neglect spin orbit interaction so we can ignore the spin.
The atom is placed in constant electric field in the z direction, this causes the atom to polarize.
(1) Write the Hamiltonian in the standard form using the dynamic variables: $\mathcal{H}\left(p_{r}, L, r, \theta, \mathcal{E}\right)$
(2) Write the two matrices that represent the unperturbed

Hamiltonian and the interaction with the electric field.
(3) Find the expression for the ground state energy $E_{g r}(\mathcal{E})$ in the second order of perturbation theory.
(4) Find the expression for the first excited state energy $E_{e x}(\mathcal{E})$ in the second order of perturbation theory.
(5) Write the expression for the polarization $\widetilde{P}=e\langle z\rangle$ of the atom that was prepared in the ground state.
(6) Write the expression for the polarization of the atom that was prepared in the excited state.

Guidance:

(a) The solutions should be expressed with (M, a, e, c_{1}, c_{2})
(b) $a=\frac{1}{\alpha M}$ the Bohr atom radius, $c_{1}=\frac{8 \sqrt{2}}{9}, c_{2}=3 \sqrt{3}$ constants that represent the solution of the radial integral.
(c) The radial functions $\frac{1}{a^{3 / 2}} R^{l \nu}$ are: $R^{01}=2 e^{-x}, R^{02}=\sqrt{\frac{1}{6}}\left(\frac{x}{2}\right) e^{-\frac{x}{2}}$, $R^{11}=\sqrt{\frac{1}{2}}\left(1-\frac{x}{2}\right) e^{-\frac{x}{2}}$.
(d) Solution will include c1, c2 and other factors.
(e) Solution to clauses 5-6 may be derived without complicated calculations.

The solution:

(1) In the $|v l m\rangle$ basis the Hamiltonian is:

$$
\mathcal{H}=\frac{P_{r}^{2}}{2 M}+\frac{L^{2}}{2 m r^{2}}-\frac{\alpha}{r}-e \mathcal{E} r \cos \theta
$$

when the last term stands for the perturbation caused by the electric field
in the z direction.
(2) The Eigenvalues for the unperturbed Hydrogen atom are:

$$
E_{v l m}=\frac{1}{2 M a^{2}(l+v)^{2}}
$$

$$
\mathcal{H}=\mathcal{H}_{0}+V
$$

The unperturbed Hamiltonian:

$$
\mathcal{H}_{0}=-\frac{1}{2 M a^{2}}\left(\begin{array}{ccccc}
1 & & & & \\
& \frac{1}{4} & & & \\
& & \frac{1}{4} & & \\
& & & \frac{1}{4} & \\
& & & & \frac{1}{4}
\end{array}\right)
$$

the interaction with the electric field:

$$
\begin{aligned}
& V=-e \mathcal{E}\left\langle\nu^{\prime} l^{\prime} m^{\prime}\right| \cos \theta|v l m\rangle=-e \mathcal{E} \int_{0}^{\infty} R^{l^{\prime} \nu^{\prime} *} r^{3} R^{l \nu} d r \int_{0}^{4 \pi} Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} \cos \theta d \Omega \\
& \cos \theta=\sqrt{\frac{4 \pi}{3}} Y_{10} \\
& V=-\sqrt{\frac{4 \pi}{3}} e \mathcal{E} \int_{0}^{\infty} R^{l^{\prime} \nu^{\prime} *} r^{3} R^{l \nu} d r \int_{0}^{4 \pi} Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} Y_{10} d \Omega
\end{aligned}
$$

from parity considerations we see that the only case in which the expression is nonzero is when the function is odd, meaning $l^{\prime} \neq l$ and $m^{\prime}=m=0$.

$$
\begin{aligned}
& -a\langle s 1| \mathcal{E} e \frac{r}{a} \cos \theta|p z\rangle=-\sqrt{\frac{4 \pi}{3}} \mathcal{E} e a \int R^{01 *} x^{3} R^{11} d x \int_{0}^{4 \pi} Y_{00}^{*} Y_{10} Y_{10} d \Omega=\frac{-\mathcal{E} e a}{\sqrt{3}} c_{1} \\
& -a\langle s 2| \mathcal{E} e \frac{r}{a} \cos \theta|p z\rangle=\frac{-\mathcal{E} e a}{\sqrt{3}} c_{2} \\
& V=-\frac{\mathcal{E} e a}{\sqrt{3}}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & c_{1} \\
0 & 0 & 0 & 0 & c_{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
c_{1} & c_{2} & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(3) The expression for the ground state energy with second order correction:

$$
E_{g r}(\mathcal{E})=E_{10}-\frac{|\langle s 1| V| p z\rangle\left.\right|^{2}}{\left|E_{10}-E_{11}\right|}=-\frac{1}{2 M a^{2}}-\frac{8 c_{1}^{2} e^{2} \mathcal{E}^{2} M a^{4}}{9}
$$

(4) The expression for the lowest excited state energy will be obtained after using degenerate perturbation theory:

$$
\begin{aligned}
& \left(\begin{array}{cc}
-\frac{1}{8 M a^{2}} & -\frac{\mathcal{E} e a}{\sqrt{3}} c_{2} \\
-\frac{\mathcal{E} e a}{\sqrt{3}} c_{2} & -\frac{1}{8 M a^{2}}
\end{array}\right) \\
& E_{e x}(\mathcal{E})=-\frac{1}{8 M a^{2}}-\frac{\mathcal{E} e a}{\sqrt{3}} c_{2}
\end{aligned}
$$

(5) The polarization can be simply obtain from the concept of generalized forces: $\mathcal{F}=-\frac{\partial \mathcal{H}}{\partial X}$

$$
\left\langle\widetilde{\mathcal{P}_{\mathrm{gr}}}\right\rangle=-\frac{\partial E_{g r}}{\partial \mathcal{E}}=\frac{16 c_{1}^{2} e^{2} \mathcal{E} M a^{4}}{9}
$$

(6) For the first excited state due to degenerate perturbation theory the energy has different dependence on the electric field:

$$
\left\langle\widetilde{\mathcal{P}_{\mathrm{ex}}}\right\rangle=-\frac{\partial E_{e x}}{\partial \mathcal{E}}=\frac{e a}{\sqrt{3}} c_{2}
$$

Thus the polarization for this state will be constant.

