E621: The linear Stark effect.

Submitted by: Ilya Bukchin

The problem:

A Hydrogen atom is positioned in a constant electric field $\mathcal{E}_{0} \hat{z}$.
As a result, the degeneracy at the first exited energy level (four dimentional sub-space) is removed.
What are the Energy levels and the Eigenvalues if we ignore the other energy levels?
Write an Expression for the first order of the perturbing Hamiltonian.

The solution:

First we define the Hamiltonian for the Hydrogen atom, A Hydrogen atom is a particle of charge e and reduced mass M that is positioned in a potential: $V_{0}=-\frac{\alpha}{r}$. After solving for each l get : $E_{\nu, l, m}=-\frac{\alpha^{2} M}{2(l+\nu)^{2}}$.
The Hamiltonain that describes the first exited level $(n=l+\nu=2)$ In the basis :

$$
|n, l, m\rangle \rightarrow|200\rangle,|210\rangle,|211\rangle,|21-1\rangle
$$

Is:

$$
\mathcal{H}_{0}^{(n=2)}=-\frac{\alpha^{2} M}{8}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The perturbing potential for this problem is : $V=-e \mathcal{E}_{0} z=-e \mathcal{E}_{0} r \cos \theta$
Therefore, the new Hamiltonian is :

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{0}-e \mathcal{E}_{0} r \cos \theta \tag{1}
\end{equation*}
$$

Now we will calculate the perturping potential:

$$
\begin{equation*}
V_{n^{\prime}, l^{\prime}, m^{\prime}, n, l, m}=-e \mathcal{E}_{0}\left\langle n^{\prime} l^{\prime} m^{\prime}\right| r \cos \theta|n l m\rangle=-e \mathcal{E}_{0} \int_{0}^{\infty} R_{n^{\prime}, l^{\prime}}^{*} r^{3} R_{n, l} d r \int_{0}^{4 \pi} Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} \cos (\theta) d \Omega \tag{2}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\langle r \theta \phi \mid n l m\rangle=R_{n, l} Y_{l, m} \tag{3}
\end{equation*}
$$

And in paticular :

$$
\begin{equation*}
n=2 \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& R_{20}=\left(\frac{M \alpha}{2}\right)^{\frac{3}{2}} \frac{r M \alpha}{\sqrt{3}} e^{-\frac{r M \alpha}{2}} \tag{5}\\
& R_{21}=\left(\frac{M \alpha}{2}\right)^{\frac{3}{2}}(2-r M \alpha) e^{-\frac{r M \alpha}{2}} \tag{6}
\end{align*}
$$

$$
\begin{equation*}
Y_{00}=\sqrt{\frac{1}{4 \pi}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \tag{8}
\end{equation*}
$$

From now on We will omit n.

Now we can write the perturbing electric field as follows : $V=-\sqrt{\frac{4 \pi}{3}} e \mathcal{E}_{0} Y_{10}$.
(substituting $\cos (\theta)$ for $\sqrt{\frac{4 \pi}{3}} Y_{10}$).
Then , equation (2) becomes :

$$
\begin{equation*}
V_{l^{\prime}, m^{\prime}, l, m}=-\sqrt{\frac{4 \pi}{3}} e \mathcal{E}_{0} \int_{0}^{\infty} R_{2, l^{\prime}}^{*} r^{3} R_{2, l} d r \int_{0}^{4 \pi} Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} Y_{10} d \Omega \tag{9}
\end{equation*}
$$

And then, from parity considerations we see that the only case in which the expression is nonzero is when the function is odd,
meaning : $l^{\prime} \neq l$ and $m^{\prime}=m=0$
and because for $m=0, Y_{l m}$ and $R_{n l}$ are Real, the expression is identical for $l=1$ and $l=0$
Then : subsituting Y_{00} for $\frac{1}{\sqrt{4 \pi}}$ and recalling the normlization of Y_{10} we get right away the radial integral:

$$
\begin{align*}
& V_{1,0,0,0}=V_{0,0,1,0}=-\frac{e \mathcal{E}_{0}(M \alpha)^{4}}{24} \int_{0}^{\infty} r^{4}(2-r M \alpha) e^{-r M \alpha} \tag{10}\\
& \left\{I_{n}=\int_{0}^{\infty} r^{n} e^{-r}: I_{n}=-n I_{n-1}: I_{0}=1\right\} \tag{11}\\
& =\ldots=\frac{3 e \mathcal{E}_{0}}{M \alpha} \tag{12}\\
& V=\frac{3 e \mathcal{E}_{0}}{M \alpha}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{align*}
$$

Now we Diagonalize \mathcal{V} in order to find the first order energy correction.

$$
V=\frac{3 e \mathcal{E}_{0}}{M \alpha}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

And the new energy levels are :

$$
\begin{aligned}
& E_{1}=-\frac{\alpha^{2} M}{8}+\frac{3 e \mathcal{E}_{0}}{M \alpha} \\
& E_{2}=-\frac{\alpha^{2} M}{8}-\frac{3 e \mathcal{E}_{0}}{M \alpha} \\
& E_{3}=-\frac{\alpha^{2} M}{8} \\
& E_{4}=-\frac{\alpha^{2} M}{8}
\end{aligned}
$$

With the corresponding eigenstates

$$
\begin{align*}
& \left|E_{1}\right\rangle=\frac{1}{\sqrt{2}}(|210\rangle+|200\rangle) \tag{13}\\
& \left|E_{2}\right\rangle=\frac{1}{\sqrt{2}}(|210\rangle-|200\rangle) \tag{14}\\
& \left|E_{3}\right\rangle=|211\rangle \tag{15}\\
& \left|E_{4}\right\rangle=|21-1\rangle \tag{16}
\end{align*}
$$

