E607: Perturbation theory for a ring + scatterer

Submitted by: Katya Pupko

The problem:

Consider a particle with mass m and charge q, on a one dimensional ring, length L .
There is a scattere in the ring which described by $V(x)=u \cos \left(\frac{2 \pi x}{L}\right)$.
Calculate the second order correction to the energy in u (for any n).

The Solution:

Should be polished.
The Hamiltonian that describes the system is:

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

The Hamiltonian has symmetry with respect to reflections. The basis we chose to work with complies with the reflection symmetry (the even/odd states):

$$
\begin{aligned}
& \left\lvert\, n=0>=\sqrt{\frac{1}{L}}\right. \\
& \left\lvert\, n_{\text {odd }}>=\sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi n x}{L}\right)\right. \\
& \left\lvert\, n_{\text {even }}>=\sqrt{\frac{2}{L}} \cos \left(\frac{2 \pi n x}{L}\right)\right.
\end{aligned}
$$

The perturbation does not couple the odd states to the even states. So we focus on the perturbation's influence on the even states, and the odd states.

$$
V_{n m}=<m|V(x)| n>
$$

For the even states:

$$
\begin{aligned}
& V_{0,1}=V_{1,0}=\int_{L}^{0} \frac{2}{L} \cos \left(\frac{2 \pi x}{L}\right) u \cos \left(\frac{2 \pi x}{L}\right) d x=\frac{u}{\sqrt{2}} \\
& V_{n m}(\text { even })=\int_{L}^{0} \frac{2}{L} \cos \left(\frac{2 \pi n x}{L}\right) \cos \left(\frac{2 \pi m x}{L}\right) u \cos \left(\frac{2 \pi x}{L}\right) d x \\
& V_{n m}(\text { even })=\frac{2}{L} u \int_{L}^{0} \frac{1}{2}\left(\cos \left(\frac{2 \pi x(n-m)}{L}+\cos \left(\frac{2 \pi x(n+m)}{L}\right)\right) \cos \left(\frac{2 \pi x}{L}\right) d x=\frac{u}{2} \delta_{|n-m|, 1}\right.
\end{aligned}
$$

For the odd states:

$$
\begin{aligned}
& V_{n m}(o d d)=\int_{L}^{0} \frac{2}{L} \sin \left(\frac{2 \pi n x}{L}\right) \sin \left(\frac{2 \pi m x}{L}\right) u \cos \left(\frac{2 \pi x}{L}\right) d x \\
& V_{n m}(o d d)=\frac{2}{L} u \int_{L}^{0} \frac{1}{2}\left(\cos \left(\frac{2 \pi x(n-m)}{L}-\cos \left(\frac{2 \pi x(n+m)}{L}\right)\right) \cos \left(\frac{2 \pi x}{L}\right) d x=\frac{u}{2} \delta_{|n-m|, 1}\right.
\end{aligned}
$$

The perturbation matrix for the block that belongs to the even and odd states:

$$
\begin{aligned}
& V_{n m}(\text { even })=\frac{u}{2}\left(\begin{array}{cccc}
0 & \sqrt{2} & 0 & \ldots \ldots . \\
\sqrt{2} & 0 & 1 & \ldots \ldots \\
0 & 1 & 0 & \ldots \ldots \\
0 & 0 & 1 & \\
\cdot & & & \cdot \\
\cdot & & &
\end{array}\right) \\
& V_{n m}(\text { odd })=\frac{u}{2}\left(\begin{array}{llll}
0 & 1 & 0 & \ldots \ldots \ldots \\
1 & 0 & 1 & \ldots \ldots \ldots . \\
0 & 1 & 0 & \ldots \ldots \ldots . \\
0 & 0 & 1 & \\
. & & & .
\end{array}\right)
\end{aligned}
$$

Therefore the corrections to the energy:
The first order corrections to the energy levels:

$$
E_{n \neq 0}^{[1]}=V_{n_{0}, n_{0}}=0
$$

The zero order energy is given by:

$$
E_{n}=\frac{2 \pi^{2} n^{2}}{m L^{2}}
$$

So the correction of the second order is:
For $n=0$:

$$
E_{0}^{[2]}=\sum_{l \neq 0} \frac{|<0| V|l>|^{2}}{E_{0}-E_{l}}=\sum_{l \neq 0} \frac{\left|V_{o l}\right|^{2}}{0-\frac{2 \pi^{2} l^{2}}{m L^{2}}}=-\frac{m L^{2}}{4 \pi^{2}} u^{2}
$$

For $n=1,2,3 \ldots \ldots$:

$$
E_{n}^{[2]}=\sum_{l \neq n} \frac{|<n| V|l>|^{2}}{E_{n}-E_{l}}=\sum_{l \neq 0} \frac{\left|V_{n l}\right|^{2}}{\frac{2 \pi^{2} n^{2}}{m L^{2}}-\frac{2 \pi^{2} l^{2}}{m L^{2}}}=\sum_{l \neq n} \frac{1}{\frac{2 \pi^{2} n^{2}}{m L^{2}}-\frac{2 \pi^{2} l^{2}}{m L^{2}}}\left(\frac{u}{2}\right)^{2}
$$

The matrix elements are all zero,except for $\mathrm{l}=\mathrm{n}+1$ and $\mathrm{l}=\mathrm{n}-1$. So the expression for the second order correction is:

$$
E_{n}^{[2]}=\frac{m L^{2}}{8 \pi^{2}}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) u^{2}
$$

And the correction to the ground state energy, up to the second order is:

$$
E_{n}=E_{n}^{[0]}+E_{n}^{[1]}+E_{n}^{[2]}
$$

For $n=0$:

$$
E_{0}=0+0-\frac{m L^{2}}{4 \pi^{2}} u^{2}=-\frac{m L^{2}}{4 \pi^{2}} u^{2}
$$

For $n \neq 0$:

$$
\begin{aligned}
& E_{n}=\frac{2 n^{2} \pi^{2}}{m L^{2}}+0+\frac{m L^{2}}{8 \pi^{2}}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) u^{2} \\
& E_{n}=\frac{2 n^{2} \pi^{2}}{m L^{2}}+\frac{m L^{2}}{8 \pi^{2}}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) u^{2}
\end{aligned}
$$

