6050: Perturbed particle in a square box

Submitted by: Elperin Ariel

The problem:

A particle with no spin, of mass m , in placed in a square box $\mathrm{x}, \mathrm{y} \in[-a, a]$. Later the particle is presented with the perturbation $\mathrm{V}=\mathrm{u} \delta(x) \delta(y)$.
(1) Write the wavefunction $\psi(x, y)$ of the unperturbed ground state.
(2) Write the wavefunction of the 3 lowest states which are coupled by the perturbation to the ground state.
(3) Write the hamiltonian $H=H_{0}+V$ as a sum of two 4 x 4 matrices.
(4) Write the eigenstates and the first order eigenenergies in u.
(5) Calculate the second order energy shift for the ground state energy.

The solution:

(1)
we have a particle in the potential:

$$
V(x . y)= \begin{cases}0 & x, y \in[-a, a] \\ \infty & x, y \notin[-a, a]\end{cases}
$$

In order to find the eigenstates, we need to solve:

$$
H \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
$$

After losing the time dependence, since $\psi=\psi(x, y) e^{-i \frac{E}{\hbar} t}$, and using separation of variables $\psi(x, y)=X(x) Y(y)$ we get an infinite well in each axis. After adding the boundary conditions: $\psi(x,-a)=\psi(x, a)=\psi(y,-a)=\psi(y, a)=0$ we have:

$$
X(x)= \begin{cases}A_{n} \sin \left(\frac{\pi n}{2 a} x\right) & \mathrm{n} \text { is even } \\ A_{n} \cos \left(\frac{\pi n}{2 a} x\right) & \mathrm{n} \text { is odd }\end{cases}
$$

Since we have the same solution for $\mathrm{Y}(\mathrm{y})$, after normalizing we get:

$$
\psi(x, y)= \begin{cases}\frac{1}{a} \sin \left(\frac{\pi n}{2 a} x\right) \sin \left(\frac{\pi m}{2 a} y\right) & \mathrm{n}, \mathrm{~m}=\text { even } \\ \frac{1}{a} \sin \left(\frac{\pi n}{2 a} x\right) \cos \left(\frac{\pi m}{2 a} y\right) & \mathrm{n}=\text { even }, \mathrm{m}=\text { odd } \\ \frac{1}{a} \cos \left(\frac{\pi n}{2 a} x\right) \sin \left(\frac{\pi m}{2 a} y\right) & \mathrm{n}=\text { odd, } \mathrm{m}=\text { even } \\ \frac{1}{a} \cos \left(\frac{\pi n}{2 a} x\right) \cos \left(\frac{\pi m}{2 a} y\right) & \mathrm{n}, \mathrm{~m}=\text { odd }\end{cases}
$$

with the corresponding eigenenergies:

$$
E_{n, m}=\frac{\hbar^{2} \pi^{2}}{8 a^{2}}\left(n^{2}+m^{2}\right)
$$

The ground state is $n=m=1$, and has the wavefunction:

$$
\psi(x, y)=\frac{1}{a} \cos \left(\frac{\pi x}{2 a}\right) \cos \left(\frac{\pi y}{2 a}\right)
$$

And energy:

$$
E_{0}=\frac{\hbar^{2} \pi^{2}}{4 a^{2}}
$$

(2)

The perturbation $V(x)=u \delta(x) \delta(y)$ only affects states with a wavefunction $\psi(x, y)$
such that $\psi(0,0) \neq 0$, otherwise the particle already cannot be found in $(0,0)$ and the perturbation has no effect. This happens only for states $\psi_{n m}$ in which n, m are odd.

Therefore, the lowest states which are coupled by the perturbation to the ground state are ψ_{13}, ψ_{31}, ψ_{33}.

$$
\begin{aligned}
& |1,3\rangle \equiv|1\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{3 \pi}{2 a} y\right) \\
& |3,1\rangle \equiv|2\rangle=\frac{1}{a} \cos \left(\frac{3 \pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) \\
& |3,3\rangle \equiv|3\rangle=\frac{1}{a} \cos \left(\frac{3 \pi}{2 a} x\right) \cos \left(\frac{3 \pi}{2 a} y\right)
\end{aligned}
$$

(3) We shall now find the perturbation matrix $V_{i j}$ in the basis $|0\rangle,|1\rangle,|2\rangle,|3\rangle$ when $|0\rangle=\psi_{11}$

$$
V_{00}=\langle 0| V|0\rangle=\frac{1}{a^{2}} \int_{-a}^{a} \int_{-a}^{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) u \delta(x) \delta(y) \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) d x d y=\frac{u}{a^{2}}
$$

It is obvious that $\forall i, j\langle i| V|j\rangle=\langle 0| V|0\rangle$, Therefore the representation of V in our basis is as follows:

$$
V=\frac{u}{a^{2}}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

The unperturbed hamiltonian is diagonal, with the eigenenergies:

$$
H_{0}|0\rangle=E_{0}|0\rangle, H_{0}|1\rangle=5 E_{0}|1\rangle, H_{0}|2\rangle=5 E_{0}|2\rangle, H_{0}|3\rangle=9 E_{0}|3\rangle
$$

where $E_{0}=\frac{\hbar^{2} \pi^{2}}{16 a^{2}}$.
Hence, the perturbed hamiltonian is:

$$
H=E_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

(4) We notice that there is degeneracy in the eigenenergy $E=5 E_{0}$ which corresponds to the two different eigenstates : $|1\rangle,|2\rangle$. In order to use the perturbation theory, we must first get rid of this degeneracy. We shall do this by the following transformation of basis:

$$
|0\rangle \rightarrow|0\rangle|1\rangle \rightarrow|S\rangle|2\rangle \rightarrow|A\rangle|3\rangle \rightarrow|3\rangle
$$

where

$$
|S\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \text { and }|A\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle)
$$

The transformation matrix is:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The unperturbed hamiltonian H_{0} has the same representation in the new basis, hence, in the new basis we have:

$$
H_{\text {new }}=H_{0}+T^{-1} V T=E_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
1 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 2 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 1
\end{array}\right)
$$

We notice that the perturbation V does not couple eigenstates with the same eigenenergey anymore, therefore we can now use the approximation:

$$
\begin{aligned}
& E_{n}=E_{n}^{(0)}+\lambda V_{n n}+\lambda^{2} \sum_{k \neq n} \frac{\left|V_{n k}\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}} \\
& |n\rangle=\left|n^{(0)}\right\rangle+\lambda \sum_{k \neq n} \frac{V_{k n}}{E_{n}^{(0)}-E_{k}^{(0)}}\left|k^{(0)}\right\rangle
\end{aligned}
$$

where

$$
H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle
$$

Using the approximation, we have the first order correction in $\frac{u}{a^{2}}$ to the eigenenergies:

$$
E_{0}=E_{0}^{(0)}+\frac{u}{a^{2}}, E_{S}=E_{S}^{(0)}+\frac{2 u}{a^{2}}, E_{A}=E_{A}^{(0)}, E_{3}=E_{3}^{(0)}+\frac{u}{a^{2}}
$$

And the first order correction to the eigenstates:

$$
\begin{aligned}
& |0\rangle=\left|0^{(0)}\right\rangle+\frac{u}{a^{2}}\left(\frac{\sqrt{2}}{-4 E_{0}}\left|S^{(0)}\right\rangle+\frac{1}{-8 E_{0}}\left|3^{(0)}\right\rangle\right)=\left(\begin{array}{c}
1 \\
-\frac{1}{2 \sqrt{2} E_{0}} \frac{u}{a^{2}} \\
0 \\
-\frac{1}{8 E_{0}} \frac{u}{a^{2}}
\end{array}\right) \\
& |S\rangle=\left|S^{(0)}\right\rangle+\frac{u}{a^{2}}\left(\frac{\sqrt{2}}{4 E_{0}}\left|0^{(0)}\right\rangle+\frac{\sqrt{2}}{-4 E_{0}}\left|3^{(0)}\right\rangle\right)=\left(\begin{array}{c}
\frac{1}{2 \sqrt{2} E_{0}} \frac{u}{a^{2}} \\
1 \\
0 \\
-\frac{1}{2 \sqrt{2} E_{0}} \frac{u}{a^{2}}
\end{array}\right) \\
& |A\rangle=\left|A^{(0)}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& |3\rangle=\left|3^{(0)}\right\rangle+\frac{u}{a^{2}}\left(\frac{1}{8 E_{0}}\left|0^{(0)}\right\rangle+\frac{\sqrt{2}}{4 E_{0}}\left|S^{(0)}\right\rangle\right)=\left(\begin{array}{c}
\frac{1}{8 E_{0}} \frac{u}{a^{2}} \\
\frac{1}{2} E_{0} \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

(5) The correction of the ground state energy up to the second order is:

$$
E_{0}=E_{0}^{(0)}+\frac{u}{a^{2}}+\frac{u^{2}}{a^{4}}\left(\frac{2}{-4 E_{0}}+\frac{1}{-8 E_{0}}\right)
$$

