E6050: Pertrubed particle in a 2D symmetric box

Submitted by: Tamir Tapuhy \& Omer Koren ; Edited by: Yaniv Oiknine

The problem:

Given a particle with no spin and mass m in a box $x, y \in[-a, a]$.
(1) Write the wave function $\psi(x, y)$ of the ground state.
(2) A potential $V=u \delta(x) \delta(y)$ is added (relates to all questions $3-5$ as well). Write three "lowest" (i.e correlating to lowest energies) eigenstates coupled with the ground state by the perturbation.
(3) Write the Hamiltonian $H=H_{0}+V$ as a sum of two 4 x 4 matrices.
(4) Write eigenstates (as column vectors) and eigenenergies up to first order of u.
(5) Calculate ground state energy to second order.

The solution:

(1) In the case of a square box, we can write the hamilotnian of the particle as:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right) \tag{1}
\end{equation*}
$$

Boundary conditions are:

$$
\begin{equation*}
\psi(-a, y)=\psi(a, y)=\psi(x, a)=\psi(x,-a)=0 \tag{2}
\end{equation*}
$$

Concluding eigenstates of a particle in a two-dimentional box:

$$
\psi(x, y)=\left\{\begin{array}{cc}
\frac{1}{a} \sin \left(k_{n, x} x\right) \sin \left(k_{m, y} y\right) & n, m=\text { even } \tag{3}\\
\frac{1}{a} \cos \left(k_{n, x} x\right) \cos \left(k_{m, y} y\right) & n, m=\text { odd } \\
\frac{1}{a} \sin \left(k_{n, x} x\right) \cos \left(k_{m, y} y\right) & n=\text { even }, m=\text { odd } \\
\frac{1}{a} \cos \left(k_{n, x} x\right) \sin \left(k_{m, y} y\right) & n=\text { odd, } m=\text { even }
\end{array}\right.
$$

where

$$
\begin{equation*}
k_{n, x}=\frac{\pi}{2 a} n \quad ; \quad k_{m, y}=\frac{\pi}{2 a} m \tag{4}
\end{equation*}
$$

and the energies are :

$$
\begin{equation*}
E_{n, m}=\frac{\hbar^{2}}{2 m}\left(k_{n, x}^{2}+k_{m, y}^{2}\right)=\frac{\hbar^{2} \pi^{2}}{8 m a^{2}}\left(n^{2}+m^{2}\right) \tag{5}
\end{equation*}
$$

The unperturbed ground state is achieved by choosing $n, m=1$, so that the wave function of the ground state is: $\frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right)$. The energy is: $E_{0}=\frac{\hbar^{2} \pi^{2}}{4 m a^{2}}$.
(2) The wave functions which are affected by the aforementioned perturbation are those for which $\psi(0,0) \neq 0$. We conclude that the 'lowest' three eigenstates are $|n=1, m=3\rangle|n=3, m=1\rangle$ and $|n=3, m=3\rangle:$

$$
\begin{align*}
& |3,1\rangle=|1\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} 3 x\right) \cos \left(\frac{\pi}{2 a} y\right) \\
& |1,3\rangle=|2\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} 3 y\right) \tag{6}\\
& |3,3\rangle=|3\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} 3 x\right) \cos \left(\frac{\pi}{2 a} 3 y\right)
\end{align*}
$$

and the energies are:

$$
\begin{equation*}
E_{1,2}=\frac{10 \hbar^{2} \pi^{2}}{8 m a^{2}} ; E_{3}=\frac{18 \hbar^{2} \pi^{2}}{8 m a^{2}} \tag{7}
\end{equation*}
$$

(3) In order to find V we will compute: $\langle n| V|m\rangle=\langle n| u \delta(x) \delta(y)|m\rangle$.

$$
\begin{equation*}
\langle 0| V|0\rangle=\int_{-a}^{a} \int_{-a}^{a} \frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) u \delta(x) \delta(y) \frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) d x d y=\frac{u}{a^{2}} \tag{8}
\end{equation*}
$$

It is obvious that all combinations give the same result, since the $\delta \operatorname{cooses} \cos (0)=1$.
The hamiltonian is:

$$
H=H_{0}+V=E_{0}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{9}\\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

(4) First of all, in order to use perturbation theory we must tackle degeneracies (i.e states $|1\rangle$ and $|2\rangle$). Changing basis by using Symmetric and Anti-Symmetric configurations:

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \quad,|S\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \tag{10}
\end{equation*}
$$

Using the transformation matrix, we derive the new Hamiltonian:

$$
\begin{align*}
& P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& P^{T} H P=E_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
1 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 2 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 1
\end{array}\right)= \tag{11}\\
& H_{\text {new }}=E_{0}\left(\begin{array}{ccc}
1+\frac{u}{E_{0} a^{2}} & 0 & 0 \\
0 & 5+\frac{2 u}{E_{0} a^{2}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
0 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 0 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 0
\end{array}\right)
\end{align*}
$$

In equation (11), one can see the $1^{\text {st }}$ order correction:

$$
\epsilon^{[0]}=\epsilon_{n_{0}} ; \epsilon^{[1]}=V_{n_{0}, n_{0}} \rightarrow \epsilon_{0}=E_{0}+\frac{u}{a^{2}} ; \epsilon_{S}=E_{1}+\frac{2 u}{a^{2}} ; \epsilon_{A}=E_{1} ; \epsilon_{3}=E_{3}+\frac{u}{a^{2}}
$$

We will compute the eigenstates to $1^{\text {st }}$ order:

$$
\Psi^{[1]}=\frac{V_{n, n_{0}}}{\epsilon_{n_{0}}-\epsilon_{n}}
$$

Marking $\frac{u}{a^{2}}=\lambda$:

$$
\begin{align*}
& \Psi_{0}^{[1]}=\left(\begin{array}{c}
0 \\
\frac{\sqrt{2} \frac{u}{a^{2}}}{-4 E_{0}-\frac{u^{2}}{a^{2}}} \\
0 \\
\frac{u}{-8 E_{0} a^{2}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}-\lambda} \\
0 \\
\frac{\lambda}{-8 E_{0} a^{2}}
\end{array}\right) \rightarrow \Psi_{0}^{[0]}+\Psi_{0}^{[1]}=\left(\begin{array}{c}
1 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}-\lambda} \\
0 \\
\frac{\lambda}{-8 E_{0} a^{2}}
\end{array}\right) \\
& \Psi_{s}^{[1]}=\left(\begin{array}{c}
\frac{\sqrt{2} \lambda}{4 E_{0}+\lambda} \\
0 \\
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}+\lambda}
\end{array}\right) \rightarrow \Psi_{S}^{[0]}+\Psi_{S}^{[1]}=\left(\begin{array}{c}
\frac{\sqrt{2} \lambda}{4 E_{0}+\lambda} \\
1 \\
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}+\lambda}
\end{array}\right) \tag{12}\\
& \Psi_{A}^{[1]}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \rightarrow \Psi_{A}^{[0]}+\Psi_{A}^{[1]}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& \Psi_{3}^{[1]}=\left(\begin{array}{c}
\frac{\lambda}{8 E_{0}} \\
\frac{\sqrt{2} \lambda}{4 E_{0}-2 \lambda} \\
0 \\
0
\end{array}\right) \rightarrow \Psi_{3}^{[0]}+\Psi_{3}^{[1]}=\left(\begin{array}{c}
\frac{\lambda}{8 E_{0}} \\
\frac{\sqrt{2} \lambda}{4 E_{0}-2 \lambda} \\
0 \\
1
\end{array}\right)
\end{align*}
$$

(5) In order to calculate $2^{\text {nd }}$ order correction of the ground state energy we will use:

$$
\begin{align*}
& \epsilon^{[2]}=\sum_{m} \frac{V_{n_{0}, m} \cdot V_{m, n_{0}}}{\epsilon_{n_{0}}-\epsilon_{m}}=\left\{n_{0}=0\right\}=\frac{V_{0, S} \cdot V_{S, 0}}{-4 E_{0}-\lambda}+\frac{V_{0, A} \cdot V_{A, 0}}{-4 E_{0}+\lambda}+\frac{V_{0,3} \cdot V_{3,0}}{-8 E_{0}}= \tag{13}\\
& =\frac{2 \lambda^{2}}{-4 E_{0}-\lambda}+\frac{\lambda^{2}}{-8 E_{0}}
\end{align*}
$$

