E6050: Pertrubated Particle in a 2D Symmetric Box

Submitted by: Tamir Tapuhy \& Omer Koren

The problem:

Given a particle without spin, and mass m in a squared box $x, y \in[-a, a]$. Later we will add the potential $V=u \delta(x) \delta(y)$.
(1) Write the wave function $\psi(x, y)$ of the unperturbated ground state.
(2) Write the lowest 3 eigenstates which are coupled to the ground state by the perturbation.
(3) Write the Hemiltonian $H=H_{0}+V$, as a sum of two 4 x 4 matrices.
(4) Write the eigenstates (as column vectors) and the first order eigen energies of u.
(5) Calculate the correction of the second order to the ground state energy.

The solution:

(1) In the case of a square box, we can write the hamilotnian of a free particle:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right) \tag{1}
\end{equation*}
$$

The particle is limited to be in the box so the boundary conditions of the wave functions are:

$$
\begin{equation*}
\psi(-a, y)=\psi(a, y)=\psi(x, a)=\psi(x,-a)=0 \tag{2}
\end{equation*}
$$

We can deal with the hemiltonian by separation of the variables x and y, and finding a solution of the form:

$$
\begin{equation*}
\psi(x, y)=X(x) \cdot Y(y) \tag{3}
\end{equation*}
$$

The solution for each axis is of the form of an infinite well: $A_{n, m} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right)$, while $k_{x}=\frac{\pi}{2 a} n ; k_{y}=\frac{\pi}{2 a} m, n, m$ - integers. Let us compute the normalization factor:

$$
\begin{align*}
& A_{n, m}^{2} \int_{-a}^{a} \int_{-a}^{a} \sin ^{2}\left(k_{x} x\right) \cos ^{2}\left(k_{y} y\right) d x d y=1 \tag{4}\\
& A_{n, m}^{2} \int_{-a}^{a}\left(\frac{1-\cos \left(\frac{2 \pi}{2 a} n \cdot x\right)}{2}\right) d x \int_{-a}^{a}\left(\frac{1+\cos \left(\frac{2 \pi}{2 a} m \cdot y\right)}{2}\right) d y=1 \tag{5}\\
& A_{n, m}^{2}=\frac{1}{a^{2}} \rightarrow A_{n, m}=\frac{1}{a} \tag{6}
\end{align*}
$$

We can now write the eigenfunction of the hamiltonian:

$$
\psi(x, y)=\left\{\begin{array}{cc}
\frac{1}{a} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) & n, m=\text { even } \tag{7}\\
\frac{1}{a} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) & n, m=\text { odd } \\
\frac{1}{a} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) & n=\text { even }, m=\text { odd } \\
\frac{1}{a} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) & n=\text { odd }, m=\text { even }
\end{array}\right.
$$

and the energies :

$$
\begin{equation*}
E_{n, m}=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)=\frac{\hbar^{2} \pi^{2}}{8 m a^{2}}\left(n^{2}+m^{2}\right) \tag{8}
\end{equation*}
$$

The unperturbated ground state is achieved by choosing $n, m=1$, so the wave function of the ground state is: $\frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right)$. The compatible energy is: $E_{0}=\frac{\hbar^{2}}{4 m a^{2}}$.
(2) The wave functions which are affected by the perturbation mentioned earlier are those that are not equal to zero at $x, y=0$ (the place of the perturbation). We can conclude that the lowest three eigenstate achieved by choosing $n=1, m=3, n=3, m=1$ and $n, m=3$. So the three talked-about eigenstates are:

$$
\begin{align*}
& |1\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} 3 x\right) \cos \left(\frac{\pi}{2 a} y\right) \\
& |2\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} 3 y\right) \tag{9}\\
& |3\rangle=\frac{1}{a} \cos \left(\frac{\pi}{2 a} 3 x\right) \cos \left(\frac{\pi}{2 a} 3 y\right)
\end{align*}
$$

and the energies:

$$
\begin{equation*}
E_{1}=\frac{10 \hbar^{2} \pi^{2}}{8 m a^{2}}=E_{2} ; E_{3}=\frac{18 \hbar^{2} \pi^{2}}{8 m a^{2}} \tag{10}
\end{equation*}
$$

(3) It can be immidiately seen that H_{0} is a diagonal matrix of the eigenvalues of the unperturbated hamiltonian. In order to find the matrix V we will compute: $\langle n| V|m\rangle=\langle n| u \delta(x) \delta(y)|m\rangle$.

$$
\begin{equation*}
\langle 0| V|0\rangle=\int_{-a}^{a} \int_{-a}^{a} \frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) u \delta(x) \delta(y) \frac{1}{a} \cos \left(\frac{\pi}{2 a} x\right) \cos \left(\frac{\pi}{2 a} y\right) d x d y=\frac{u}{a^{2}} \tag{11}
\end{equation*}
$$

It is obvious that all the combination will give the same result, because of the integral with the Delta function.
The wanted hamiltonian is:

$$
H=H_{0}+V=E_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{12}\\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

(4) First of all, in order to use perturbation theory we must deal with the degeneracy between the states $|1\rangle$ and $|2\rangle$. We will chage the base by using the Symmetric and Anti-Symmetric configurations:

$$
\begin{equation*}
|A\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \quad,|S\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \tag{13}
\end{equation*}
$$

By using the transformation matrix, built of the eigenstaes $|0\rangle,|S\rangle,|A\rangle$ and $|4\rangle$ we get the new Hamiltonian:

$$
\begin{align*}
& P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& P^{T} H P=E_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
1 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 2 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 1
\end{array}\right)= \tag{14}\\
& H_{\text {new }}=E_{0}\left(\begin{array}{cccc}
1+\frac{u}{E_{0} a^{2}} & 0 & 0 & 0 \\
0 & 5+\frac{2 u}{E_{0} a^{2}} & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9+\frac{u}{E_{0} a^{2}}
\end{array}\right)+\frac{u}{a^{2}}\left(\begin{array}{cccc}
0 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 0 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 0
\end{array}\right)
\end{align*}
$$

In equation number 14 above, one can see the energy with the first order correction.

$$
\epsilon^{[0]}=\epsilon_{n_{0}} ; \epsilon^{[1]}=V_{n_{0}, n_{0}} \rightarrow \epsilon_{0}=E_{0}+\frac{u}{a^{2}} ; \epsilon_{S}=E_{1}+\frac{2 u}{a^{2}} ; \epsilon_{A}=E_{1} ; \epsilon_{3}=E_{3}+\frac{u}{a^{2}}
$$

Now, as asked we will compute the eigenstates of the first order and present it as column vectors.

$$
\Psi^{[1]}=\frac{V_{n, n_{0}}}{\epsilon_{n_{0}}-\epsilon_{n}}
$$

We will mark $\frac{u}{a^{2}}=\lambda$ as accepted.

$$
\begin{align*}
& \Psi_{0}^{[1]}=\left(\begin{array}{c}
0 \\
\frac{\sqrt{2} \frac{u}{a^{2}}}{-4 E_{0}-\frac{u^{2}}{a^{2}}} \\
0 \\
\frac{u}{-8 E_{0} a^{2}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}-\lambda} \\
0 \\
\frac{\lambda}{-8 E_{0} a^{2}}
\end{array}\right) \rightarrow \Psi_{0}^{[0]}+\Psi_{0}^{[1]}=\left(\begin{array}{c}
1 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}-\lambda} \\
0 \\
\frac{\lambda}{-8 E_{0} a^{2}}
\end{array}\right) \\
& \Psi_{s}^{[1]}=\left(\begin{array}{c}
\frac{\sqrt{2} \lambda}{4 E_{0}+\lambda} \\
0 \\
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}+\lambda}
\end{array}\right) \rightarrow \Psi_{S}^{[0]}+\Psi_{S}^{[1]}=\left(\begin{array}{c}
\frac{\sqrt{2} \lambda}{4 E_{0}+\lambda} \\
1 \\
0 \\
\frac{\sqrt{2} \lambda}{-4 E_{0}+\lambda}
\end{array}\right) \tag{15}\\
& \Psi_{A}^{[1]}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right) \rightarrow \Psi_{A}^{[0]}+\Psi_{A}^{[1]}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& \Psi_{3}^{[1]}=\left(\begin{array}{c}
\frac{\lambda}{8 E_{0}} \\
\frac{\sqrt{2} \lambda}{4 E_{0}-2 \lambda} \\
0 \\
0
\end{array}\right) \rightarrow \Psi_{3}^{[0]}+\Psi_{3}^{[1]}=\left(\begin{array}{c}
\frac{\lambda}{8 E_{0}} \\
\frac{\sqrt{2} \lambda}{4 E_{0}-2 \lambda} \\
0 \\
1
\end{array}\right)
\end{align*}
$$

(5) In order to Calculate the correction of the second order to the ground state energy we will use the expression:

$$
\begin{align*}
& \epsilon^{[2]}=\sum_{m} \frac{V_{n_{0}, m} \cdot V_{m, n_{0}}}{\epsilon_{n_{0}}-\epsilon_{m}}=\left\{n_{0}=0\right\}=\frac{V_{0, S} \cdot V_{S, 0}}{-4 E_{0}-\lambda}+\frac{V_{0, A} \cdot V_{A, 0}}{-4 E_{0}+\lambda}+\frac{V_{0,3} \cdot V_{3,0}}{-8 E_{0}}= \tag{16}\\
& =\frac{2 \lambda^{2}}{-4 E_{0}-\lambda}+\frac{\lambda^{2}}{-8 E_{0}}
\end{align*}
$$

As we know, the second order correction, for the ground state, will allways be negative, and one can see it in the result that we got.

