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The problem:

Given a particle without spin, and mass m in a squared box x, y ∈ [−a, a] . Later we will add the
potential V = uδ(x)δ(y) .

(1) Write the wave function ψ(x, y) of the unperturbated ground state.
(2) Write the lowest 3 eigenstates which are coupled to the ground state by the perturbation.
(3) Write the Hemiltonian H = H0 + V , as a sum of two 4x4 matrices.
(4) Write the eigenstates (as column vectors) and the first order eigen energies of u.
(5) Calculate the correction of the second order to the ground state energy.

The solution:

(1) In the case of a square box, we can write the hamilotnian of a free particle:

Ĥ = − ~2

2m

(
p2x + p2y

)
(1)

The particle is limited to be in the box so the boundary conditions of the wave functions are:

ψ (−a, y) = ψ (a, y) = ψ (x, a) = ψ(x,−a) = 0 (2)

We can deal with the hemiltonian by separation of the variables x and y, and finding a solution of
the form:

ψ (x, y) = X(x) · Y (y) (3)

The solution for each axis is of the form of an infinite well: An,m sin (kxx) sin (kyy),
while kx = π

2an; ky = π
2am , n,m - integers. Let us compute the normalization factor:

A2
n,m

∫ a

−a

∫ a

−a
sin2 (kxx) cos2 (kyy) dxdy = 1 (4)

A2
n,m

∫ a

−a

(
1− cos

(
2π
2an · x

)
2

)
dx

∫ a

−a

(
1 + cos

(
2π
2am · y

)
2

)
dy = 1 (5)

A2
n,m =

1

a2
→ An,m =

1

a
(6)

We can now write the eigenfunction of the hamiltonian:

ψ(x, y) =


1
a sin (kxx) sin(kyy)
1
a cos (kxx) cos(kyy)
1
a sin (kxx) cos(kyy)
1
a cos (kxx) sin(kyy)

n,m = even

n,m = odd

n = even,m = odd

n = odd,m = even

(7)

and the energies :

En,m =
~2

2m

(
k2x + k2y

)
=

~2π2

8ma2
(
n2 +m2

)
(8)
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The unperturbated ground state is achieved by choosing n,m = 1 , so the wave function of the
ground state is: 1

a cos
(
π
2ax
)

cos( π2ay) . The compatible energy is: E0 = ~2
4ma2

.

(2) The wave functions which are affected by the perturbation mentioned earlier are those that are
not equal to zero at x, y = 0 (the place of the perturbation). We can conclude that the lowest
three eigenstate achieved by choosing n = 1,m = 3, n = 3,m = 1 and n,m = 3 . So the three
talked-about eigenstates are:

|1〉 = 1
a cos

(
π
2a3x

)
cos( π2ay)

|2〉 = 1
a cos

(
π
2ax
)

cos( π2a3y)
|3〉 = 1

a cos
(
π
2a3x

)
cos( π2a3y)

(9)

and the energies:

E1 =
10~2π2

8ma2
= E2; E3 =

18~2π2

8ma2
(10)

(3) It can be immidiately seen that H0 is a diagonal matrix of the eigenvalues of the unperturbated
hamiltonian. In order to find the matrix V we will compute: 〈n|V |m〉 = 〈n|uδ (x) δ (y) |m〉 .

〈0|V |0〉 =

∫ a

−a

∫ a

−a

1

a
cos
( π

2a
x
)

cos
( π

2a
y
)
uδ (x) δ (y)

1

a
cos
( π

2a
x
)

cos
( π

2a
y
)
dxdy =

u

a2
(11)

It is obvious that all the combination will give the same result, because of the integral with the
Delta function.
The wanted hamiltonian is:

H = H0 + V = E0


1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 9

+
u

a2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (12)

(4) First of all, in order to use perturbation theory we must deal with the degeneracy between the
states |1〉and |2〉. We will chage the base by using the Symmetric and Anti-Symmetric configurations:

|A〉 = 1√
2

(|1〉+ |2〉) , |S〉 =
1√
2

(|1〉 − |2〉) (13)

By using the transformation matrix, built of the eigenstaes |0〉, |S〉, |A〉and |4〉we get the new Hamil-
tonian:

P =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1



P THP = E0


1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 9

+
u

a2


1
√

2 0 1√
2 2 0

√
2

0 0 0 0

1
√

2 0 1

 = (14)

Hnew = E0


1 + u

E0a2
0 0 0

0 5 + 2u
E0a2

0 0

0 0 5 0
0 0 0 9 + u

E0a2

+
u

a2


0
√

2 0 1√
2 0 0

√
2

0 0 0 0

1
√

2 0 0
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In equation number 14 above, one can see the energy with the first order correction.

ε[0] = εn0 ; ε[1] = Vn0,n0 → ε0 = E0 +
u

a2
; εS = E1 +

2u

a2
; εA = E1 ; ε3 = E3 +

u

a2

Now, as asked we will compute the eigenstates of the first order and present it as column vectors.

Ψ[1] =
Vn,n0

εn0 − εn

We will mark u
a2

= λ as accepted.

Ψ
[1]
0 =


0√
2 u
a2

−4E0− u
a2

0
u

−8E0a2

 =


0√
2λ

−4E0−λ
0
λ

−8E0a2

→ Ψ
[0]
0 + Ψ

[1]
0 =


1√
2λ

−4E0−λ
0
λ

−8E0a2



Ψ[1]
s =


√
2λ

4E0+λ

0
0√
2λ

−4E0+λ

→ Ψ
[0]
S + Ψ

[1]
S =


√
2λ

4E0+λ

1
0√
2λ

−4E0+λ

 (15)

Ψ
[1]
A =


0
0
0
0

→ Ψ
[0]
A + Ψ

[1]
A =


0
0
1
0



Ψ
[1]
3 =


λ

8E0√
2λ

4E0−2λ
0
0

→ Ψ
[0]
3 + Ψ

[1]
3 =


λ

8E0√
2λ

4E0−2λ
0
1


(5) In order to Calculate the correction of the second order to the ground state energy we will use
the expression:

ε[2] =
∑
m

Vn0,m · Vm,n0

εn0 − εm
= {n0 = 0} =

V0,S · VS,0
−4E0 − λ

+
V0,A · VA,0
−4E0 + λ

+
V0,3 · V3,0
−8E0

= (16)

=
2λ2

−4E0 − λ
+

λ2

−8E0

As we know, the second order correction, for the ground state, will allways be negative, and one
can see it in the result that we got.
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