Ex5666: A particle in a two dimensional box with a potential step
 Submitted by: Shir Ezra, Liad Shamir

The problem:

An electron with mass M is in a two dimensional box $|x|<a,|y|<b$. Inside the box there is a step potential $V(x)=\frac{1}{2} V_{0} \cdot \operatorname{sgn}(x)$.
In this question you need to consider spin-orbit interaction. Units: $c=1, e=1, g \approx 2$.

1. Write the Hamiltonian using the position and momentum operators and the spin operator σ_{z}.
2. Write the unperturbed eigenstates $|n, m\rangle$ in the standard basis.
3. Write an expression for the matrix elements $\langle n, m| V(x)|1,1\rangle$.
4. Calculate the second order correction of the ground state energy which arise from the electrostatic interaction.
5. Which states are not effected by the spin-orbit interaction?
6. Repeat section 3 for spin-orbit interaction.
7. Repeat section 4 for spin-orbit interaction.

TIP: Use the following symbols:
$\operatorname{SIN}_{\nu}(\theta)=\cos (\nu \theta)$ for $\quad \nu=1,3, \ldots$
$\operatorname{SIN}_{\nu}(\theta)=\sin (\nu \theta) \quad$ for $\quad \nu=2,4, \ldots$
$c_{\nu}=\int_{0}^{\pi \backslash 2} \sin (\nu \theta) \cos (\theta) d \theta$
The spin state σ_{z} is a "good quantum number"- you should only address it in your answer to section 6.
The answers to sections 4 and 7 are series, clearly state the summation index.

The solution:

1.

$$
\mathcal{H}=\frac{1}{2 M} \hat{p}^{2}+V(\hat{x})-\frac{1}{2 M^{2}}(g-1)(\overrightarrow{\mathcal{E}} \times \vec{p}) \vec{S}=\frac{1}{2 M} \hat{p}^{2}+\frac{1}{2} V_{0} \cdot \operatorname{sgn}(\hat{x})+\frac{V_{0}}{4 M^{2}} \hat{p_{y}} \cdot \delta(\hat{x}) \cdot \hat{\sigma_{z}}
$$

2. Boundary conditions:

$$
\begin{aligned}
& \Psi(x= \pm a)=\Psi(y= \pm b)=0 \\
& |n, m\rangle=\frac{1}{\sqrt{a b}} \cdot \operatorname{SIN}_{n}\left(\frac{\pi x}{2 a}\right) \cdot \operatorname{SIN}_{m}\left(\frac{\pi y}{2 b}\right)
\end{aligned}
$$

eigenvalues:

$$
\mathcal{E}_{n, m}=\frac{1}{2 M}\left[\left(\frac{\pi n}{2 a}\right)^{2}+\left(\frac{\pi m}{2 b}\right)^{2}\right], \quad \text { for } \quad V_{0}=0
$$

3.

$$
\begin{aligned}
& \langle n, m| V(x)|1,1\rangle=\frac{V_{0}}{2 a b} \int_{-a}^{a} \operatorname{SIN}_{n}\left(\frac{\pi x}{2 a}\right) \cos \left(\frac{\pi x}{2 a}\right) \operatorname{sgn}(x) d x \cdot \int_{-b}^{b} \operatorname{SIN}_{m}\left(\frac{\pi y}{2 b}\right) \cos \left(\frac{\pi y}{2 b}\right) d y= \\
& =\frac{2 \delta_{1, m} \cdot V_{0} \cdot c_{n}}{\pi}, \text { for } n=2,4, \ldots
\end{aligned}
$$

4.

$$
E_{11}^{[2]}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(|\langle n, m| V| 1,1\rangle \mid)^{2}}{E_{11}-E_{n, m}}=-\frac{32 M V_{0}^{2} a^{2}}{\pi^{4}} \sum_{n=1}^{\infty} \frac{c_{2 n}^{2}}{4 n^{2}-1}
$$

5. The spin-orbit term of the Hamiltonian is:

$$
\mathcal{H}_{S O}=\frac{V_{0}}{4 M^{2}} \hat{p_{y}} \cdot \delta(\hat{x}) \cdot \hat{\sigma_{z}}
$$

Thus the eigenstates for which $\Psi(x=0)=0$ are unaffected by the delta function. This condition applies only to even n.
6.

$$
\begin{aligned}
& \langle n, m| \mathcal{H}_{S O}|1,1\rangle=\frac{-i V_{0} \cdot \sigma_{z}}{4 M^{2} a b} \int_{-a}^{a} \operatorname{SIN}_{n}\left(\frac{\pi x}{2 a}\right) \cos \left(\frac{\pi x}{2 a}\right) \delta(x) d x \cdot \int_{-b}^{b} \operatorname{SIN}_{m}\left(\frac{\pi y}{2 b}\right) \frac{\partial}{\partial y} \cos \left(\frac{\pi y}{2 b}\right) d y= \\
& =\frac{i V_{0} \cdot \sigma_{z} \cdot c_{m}}{2 M^{2} a b} \text { for } m=2,4, \ldots ; n=1,3, \ldots
\end{aligned}
$$

7.

$$
E_{11}^{[2]}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\left.\left(\left|\langle n, m| \mathcal{H}_{S O}\right| 1,1\right\rangle \mid\right)^{2}}{E_{11}-E_{n, m}}=-\frac{2 V_{0}^{2}}{M^{3} \pi^{2} a^{2} b^{2}} \sum_{n=1,3, \ldots}^{\infty} \sum_{n=2,4, \ldots \ldots}^{\infty} \frac{c_{m}^{2}}{\frac{n^{2}-1}{a^{2}}+\frac{m^{2}-1}{b^{2}}}
$$

