Ex5662: Landau levels in Graphene

Submitted by: Gilad Sade and Sahar Malka

The problem:

The effective Hamiltonian of an electron in a 2-D layer of Graphene is $H = v_0 \sigma(p - eA)$ while $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, 0)$ and \boldsymbol{A} is the vector potential for a perpendicular magnetic field \boldsymbol{B} within the Landau gauge.

Notice that the standard basis for an electron is $|x,y,m\rangle$, $m=\downarrow,\uparrow$.

- (1) In the absence of a magnetic field, for a given momentum $p = (p_x, p_y)$, what are the eigenenergies of the particle?
- (2) Within the Landau gauge $\hat{Y} = -(\frac{1}{eB})\hat{p_x}$ is a constant of motion. Write down the Hamiltonian $H^{(Y)} = H_{m,m'}(p_y, y-Y)$ after the variable separation. Note that the linear combination of canonical coordinates $a = \frac{(sQ + \frac{iP}{s})}{\sqrt{2}}$ is a ladder operator, and write down the Hamiltonian derived in the alternative notation $H_{m,m'}(a,a^{\dagger})$

(3) Define the operator $C = (H^{(Y)})^2$.

Calculate the eigenvalues $\lambda_{n=0,1,2...}$ of C,

notice, the eigenvalues are degenerated except n=0.

(4) Since C is a constant of motion it is possible to use variable separation once more.

Write down the 2X2 matrix representing $H^{(Y,n)}$.

- (5) What are the energy levels $E_{Y,n,\pm}$ for n > 0?
- (6) Find the eigenstates and write them in the standard basis.

Notice that the quantum state in the standard basis in represented by $\Psi \mapsto (\psi_{\uparrow}(x,y), \psi_{\downarrow}(x,y))$.

You may use the notation $\varphi^n()$ for the eigenfunctions of a 1-D harmonic oscillator.

The solution:

(1) The Hamiltonian without a magnetic field is:

$$H = v_0 \boldsymbol{\sigma} \cdot \boldsymbol{p} = v_0 (\sigma_x p_x + \sigma_y p_y)$$

$$= v_0 \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix} = v_0 |\mathbf{p}| \begin{pmatrix} 0 & e^{-i\phi} \\ e^{i\phi} & 0 \end{pmatrix}$$

where $\mathbf{p} = (p_x, p_y)$ is given and $tg(\phi) = \frac{p_y}{p_x}$. Diagonalization of this Hamiltonian provides the following eigenenergies: $E_{\pm} = \pm v_0 |\mathbf{p}|$.

(2) The vector potential within the Landau gauge is:

$$\boldsymbol{A} = B(-y, 0, 0)$$

Therefore the Hamiltonian is:

$$H = v_0[\sigma_x(p_x + eB_y) + \sigma_y p_y]$$

plugging the definition of Y into H yields:

$$H = v_0[eB\sigma_x(y - Y) + \sigma_y p_y]$$

One should notice that [Y, H] = 0, thus the Hamiltonian is separable into blocks of the form:

$$H^{(Y)} = v_0[eB\sigma_x(y - Y) + \sigma_y p_y] = v_0\sqrt{eB}[\sqrt{eB}\sigma_x(y - Y) + \frac{1}{\sqrt{eB}}\sigma_y p_y]$$

1

We define:

$$Q = y - Y, P = p_y, s = \sqrt{eB}$$

So:

$$H^{(Y)}(Q, P) = v_0[\sigma_x \sqrt{eB}Q + \frac{1}{\sqrt{eB}}\sigma_y P]$$

Using the ladder operator given:

$$a = \frac{1}{\sqrt{2}}(Q\sqrt{eB} + \frac{i}{\sqrt{eB}}P)$$

$$\downarrow \downarrow$$

$$Q = \frac{1}{\sqrt{2eB}}(a^{\dagger} + a), P = \frac{\sqrt{eB}}{i\sqrt{2}}(a - a^{\dagger})$$

plugging into the Hamiltonian:

$$\begin{split} H^{(Y)}(a,a^{\dagger}) &= v_0 \sqrt{2eB} [a(\sigma_x - i\sigma_y) + a^{\dagger}(\sigma_x + i\sigma_y)] \\ H^{(Y)} &\mapsto v_0 \sqrt{2eB} \begin{pmatrix} 0 & a^{\dagger} \\ a & 0 \end{pmatrix} \end{split}$$

(3)
$$[a, a^{\dagger}] = 1 \Rightarrow aa^{\dagger} = 1 + a^{\dagger}a$$

$$C = (H^{(Y)})^2 \mapsto 2eBv_0^2 \begin{pmatrix} a^{\dagger}a & 0\\ 0 & aa^{\dagger} \end{pmatrix} = 2eBv_0^2 \begin{pmatrix} a^{\dagger}a & 0\\ 0 & a^{\dagger}a + 1 \end{pmatrix}$$

The eigenstates of $a^{\dagger}a$ satisfy:(1D harmonic oscillator)

$$a^{\dagger}a |n\rangle = n |n\rangle, (n = 0, 1, 2...)$$

The eigenvectors of C are: $\binom{|n\rangle}{0}$, $\binom{0}{|n-1\rangle}$

$$C^{(n)} \mapsto 2eBv_0^2 \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix} \Rightarrow \lambda_n = 2eBv_0^2 n$$

(4) $[C, H^{(Y)}] = 0$, therefore $H^{(Y)}$ is separable into blocks.

$$H^{(Y)} \begin{pmatrix} |n\rangle \\ 0 \end{pmatrix} = v_0 \sqrt{2eB} \begin{pmatrix} 0 \\ a |n\rangle \end{pmatrix} = v_0 \sqrt{2eBn} \begin{pmatrix} 0 \\ |n-1\rangle \end{pmatrix}$$

$$H^{(Y)} \begin{pmatrix} 0 \\ |n-1\rangle \end{pmatrix} = v_0 \sqrt{2eB} \begin{pmatrix} a^{\dagger} |n-1\rangle \\ 0 \end{pmatrix} = v_0 \sqrt{2eBn} \begin{pmatrix} |n\rangle \\ 0 \end{pmatrix}$$

$$\downarrow \downarrow$$

$$H^{(Y,n)} \mapsto v_0 \sqrt{2eB} \begin{pmatrix} 0 & \sqrt{n} \\ \sqrt{n} & 0 \end{pmatrix}$$

(5)
$$H^{(Y,n)} = v_0 \sqrt{2eBn} \sigma_x \Rightarrow E_{Y,n,\pm} = \pm v_0 \sqrt{2eBn}, (n > 0)$$

(6) The eigenstates of ${\cal H}^{(Y)}$ are (up to a normalization factor):

$$\binom{|n\rangle}{\pm |n-1\rangle}$$

the representation of these eigenstates in the standard basis is:

$$\begin{pmatrix} \varphi^n(y) \\ \pm \varphi^{n-1}(y) \end{pmatrix}$$

remembering that Y shares the same eigenstates with p_x yields the following eigenstates:

$$e^{-ieBYx} \begin{pmatrix} \varphi^n(y) \\ \pm \varphi^{n-1}(y) \end{pmatrix}$$