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The problem:

The effective Hamiltonian of an electron in a 2-D layer of Graphene is H = v0σ(p − eA) while
σ = (σx, σy, 0) and A is the vector potential for a perpendicular magnetic field B within the
Landau gauge.
Notice that the standard basis for an electron is |x, y,m〉, m =↓, ↑ .

(1)In the absence of a magnetic field, for a given momentum p = (px, py), what are the eigenenergies
of the particle?
(2)Within the Landau gauge Ŷ = −( 1

eB )p̂x is a constant of motion. Write down the Hamiltonian

H(Y ) = Hm,m′(py, y−Y ) after the variable separation. Note that the linear combination of canonical

coordinates a =
(sQ+ iP

s
)√

2
is a ladder operator, and write down the Hamiltonian derived in the

alternative notation Hm,m′(a, a†)
(3)Define the operator C = (H(Y ))2.
Calculate the eigenvalues λn=0,1,2... of C,
notice, the eigenvalues are degenerated except n = 0.
(4)Since C is a constant of motion it is possible to use variable separation once more.
Write down the 2X2 matrix representing H(Y,n).
(5)What are the energy levels EY,n,± for n > 0?
(6)Find the eigenstates and write them in the standard basis.
Notice that the quantum state in the standard basis in represented by Ψ 7→ (ψ↑(x, y), ψ↓(x, y)).
You may use the notation ϕn() for the eigenfunctions of a 1-D harmonic oscillator.

The solution:

(1)The Hamiltonian without a magnetic field is:

H = v0σ · p = v0(σxpx + σypy)

= v0

(
0 px − ipy

px + ipy 0

)
= v0|p|

(
0 e−iφ

eiφ 0

)
where p = (px, py) is given and tg(φ) =

py
px

.
Diagonalization of this Hamiltonian provides the following eigenenergies: E± = ±v0|p|.

(2)The vector potential within the Landau gauge is:

A = B(−y, 0, 0)

Therefore the Hamiltonian is:
H = v0[σx(px + eBy) + σypy]

plugging the definition of Y into H yields:

H = v0[eBσx(y − Y ) + σypy]

One should notice that [Y,H] = 0, thus the Hamiltonian is separable into blocks of the form:

H(Y ) = v0[eBσx(y − Y ) + σypy] = v0
√
eB[
√
eBσx(y − Y ) +

1√
eB

σypy]
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We define:
Q = y − Y, P = py, s =

√
eB

So:

H(Y )(Q,P ) = v0[σx
√
eBQ+

1√
eB

σyP ]

Using the ladder operator given:

a =
1√
2

(Q
√
eB +

i√
eB

P )

⇓

Q =
1√
2eB

(a† + a), P =

√
eB

i
√

2
(a− a†)

plugging into the Hamiltonian:

H(Y )(a, a†) = v0
√

2eB[a(σx − iσy) + a†(σx + iσy)]

H(Y ) 7→ v0
√

2eB

(
0 a†

a 0

)

(3)
[a, a†] = 1⇒ aa† = 1 + a†a

C = (H(Y ))2 7→ 2eBv20

(
a†a 0
0 aa†

)
= 2eBv20

(
a†a 0
0 a†a+ 1

)
The eigenstates of a†a satisfy:(1D harmonic oscillator)

a†a |n〉 = n |n〉 , (n = 0, 1, 2 . . . )

The eigenvectors of C are:

(
|n〉
0

)
,

(
0

|n− 1〉

)

C(n) 7→ 2eBv20

(
n 0
0 n

)
⇒ λn = 2eBv20n

(4) [C,H(Y )] = 0, therefore H(Y ) is separable into blocks.

H(Y )

(
|n〉
0

)
= v0
√

2eB

(
0

a |n〉

)
= v0
√

2eBn

(
0

|n− 1〉

)

H(Y )

(
0

|n− 1〉

)
= v0
√

2eB

(
a† |n− 1〉

0

)
= v0
√

2eBn

(
|n〉
0

)
⇓

H(Y,n) 7→ v0
√

2eB

(
0
√
n√

n 0

)

(5)
H(Y,n) = v0

√
2eBnσx ⇒ EY,n,± = ±v0

√
2eBn, (n > 0)
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(6) The eigenstates of H(Y ) are (up to a normalization factor):(
|n〉

± |n− 1〉

)
the representation of these eigenstates in the standard basis is:(

ϕn(y)
±ϕn−1(y)

)
remembering that Y shares the same eigenstates with px yields the following eigenstates:

e−ieBY x
(

ϕn(y)
±ϕn−1(y)

)
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