## Ex5662: Landau levels in Graphene

Submitted by: Gilad Sade and Sahar Malka

## The problem:

The effective Hamiltonian of an electron in a 2-D layer of Graphene is $H=v_{0} \boldsymbol{\sigma}(\boldsymbol{p}-e \boldsymbol{A})$ while $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, 0\right)$ and $\boldsymbol{A}$ is the vector potential for a perpendicular magnetic field $\boldsymbol{B}$ within the Landau gauge.
Notice that the standard basis for an electron is $|x, y, m\rangle, m=\downarrow, \uparrow$.
(1)In the absence of a magnetic field, for a given momentum $\boldsymbol{p}=\left(p_{x}, p_{y}\right)$, what are the eigenenergies of the particle?
(2)Within the Landau gauge $\hat{Y}=-\left(\frac{1}{e B}\right) \hat{p_{x}}$ is a constant of motion. Write down the Hamiltonian $H^{(Y)}=H_{m, m^{\prime}}\left(p_{y}, y-Y\right)$ after the variable separation. Note that the linear combination of canonical coordinates $a=\frac{\left(s Q+\frac{i P}{s}\right)}{\sqrt{2}}$ is a ladder operator, and write down the Hamiltonian derived in the alternative notation $H_{m, m^{\prime}}\left(a, a^{\dagger}\right)$
(3)Define the operator $C=\left(H^{(Y)}\right)^{2}$.

Calculate the eigenvalues $\lambda_{n=0,1,2 \ldots}$ of $C$,
notice, the eigenvalues are degenerated except $n=0$.
(4) Since $C$ is a constant of motion it is possible to use variable separation once more.

Write down the $2 X 2$ matrix representing $H^{(Y, n)}$.
(5)What are the energy levels $E_{Y, n, \pm}$ for $n>0$ ?
(6)Find the eigenstates and write them in the standard basis.

Notice that the quantum state in the standard basis in represented by $\Psi \mapsto\left(\psi_{\uparrow}(x, y), \psi_{\downarrow}(x, y)\right)$.
You may use the notation $\varphi^{n}()$ for the eigenfunctions of a 1-D harmonic oscillator.

## The solution:

(1)The Hamiltonian without a magnetic field is:

$$
\begin{gathered}
H=v_{0} \boldsymbol{\sigma} \cdot \boldsymbol{p}=v_{0}\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right) \\
=v_{0}\left(\begin{array}{cc}
0 & p_{x}-i p_{y} \\
p_{x}+i p_{y} & 0
\end{array}\right)=v_{0}|\boldsymbol{p}|\left(\begin{array}{cc}
0 & e^{-i \phi} \\
e^{i \phi} & 0
\end{array}\right)
\end{gathered}
$$

where $\boldsymbol{p}=\left(p_{x}, p_{y}\right)$ is given and $\operatorname{tg}(\phi)=\frac{p_{y}}{p_{x}}$.
Diagonalization of this Hamiltonian provides the following eigenenergies: $E_{ \pm}= \pm v_{0}|\boldsymbol{p}|$.
(2)The vector potential within the Landau gauge is:

$$
\boldsymbol{A}=B(-y, 0,0)
$$

Therefore the Hamiltonian is:

$$
H=v_{0}\left[\sigma_{x}\left(p_{x}+e B_{y}\right)+\sigma_{y} p_{y}\right]
$$

plugging the definition of Y into H yields:

$$
H=v_{0}\left[e B \sigma_{x}(y-Y)+\sigma_{y} p_{y}\right]
$$

One should notice that $[Y, H]=0$, thus the Hamiltonian is separable into blocks of the form:

$$
H^{(Y)}=v_{0}\left[e B \sigma_{x}(y-Y)+\sigma_{y} p_{y}\right]=v_{0} \sqrt{e B}\left[\sqrt{e B} \sigma_{x}(y-Y)+\frac{1}{\sqrt{e B}} \sigma_{y} p_{y}\right]
$$

We define:

$$
Q=y-Y, P=p_{y}, s=\sqrt{e B}
$$

So:

$$
H^{(Y)}(Q, P)=v_{0}\left[\sigma_{x} \sqrt{e B} Q+\frac{1}{\sqrt{e B}} \sigma_{y} P\right]
$$

Using the ladder operator given:

$$
\begin{gathered}
a=\frac{1}{\sqrt{2}}\left(Q \sqrt{e B}+\frac{i}{\sqrt{e B}} P\right) \\
\Downarrow \\
Q=\frac{1}{\sqrt{2 e B}}\left(a^{\dagger}+a\right), P=\frac{\sqrt{e B}}{i \sqrt{2}}\left(a-a^{\dagger}\right)
\end{gathered}
$$

plugging into the Hamiltonian:

$$
\begin{gathered}
H^{(Y)}\left(a, a^{\dagger}\right)=v_{0} \sqrt{2 e B}\left[a\left(\sigma_{x}-i \sigma_{y}\right)+a^{\dagger}\left(\sigma_{x}+i \sigma_{y}\right)\right] \\
H^{(Y)} \mapsto v_{0} \sqrt{2 e B}\left(\begin{array}{cc}
0 & a^{\dagger} \\
a & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{gather*}
{\left[a, a^{\dagger}\right]=1 \Rightarrow a a^{\dagger}=1+a^{\dagger} a}  \tag{3}\\
C=\left(H^{(Y)}\right)^{2} \mapsto 2 e B v_{0}^{2}\left(\begin{array}{cc}
a^{\dagger} a & 0 \\
0 & a a^{\dagger}
\end{array}\right)=2 e B v_{0}^{2}\left(\begin{array}{cc}
a^{\dagger} a & 0 \\
0 & a^{\dagger} a+1
\end{array}\right)
\end{gather*}
$$

The eigenstates of $a^{\dagger} a$ satisfy:(1D harmonic oscillator)

$$
a^{\dagger} a|n\rangle=n|n\rangle,(n=0,1,2 \ldots)
$$

The eigenvectors of $C$ are: $\binom{|n\rangle}{ 0},\binom{0}{|n-1\rangle}$

$$
C^{(n)} \mapsto 2 e B v_{0}^{2}\left(\begin{array}{cc}
n & 0 \\
0 & n
\end{array}\right) \Rightarrow \lambda_{n}=2 e B v_{0}^{2} n
$$

(4) $\left[C, H^{(Y)}\right]=0$, therefore $H^{(Y)}$ is separable into blocks.

$$
\begin{gathered}
H^{(Y)}\binom{|n\rangle}{ 0}=v_{0} \sqrt{2 e B}\binom{0}{a|n\rangle}=v_{0} \sqrt{2 e B n}\binom{0}{|n-1\rangle} \\
H^{(Y)}\binom{0}{|n-1\rangle}=v_{0} \sqrt{2 e B}\binom{a^{\dagger}|n-1\rangle}{ 0}=v_{0} \sqrt{2 e B n}\binom{|n\rangle}{ 0} \\
\Downarrow \\
H^{(Y, n)} \mapsto v_{0} \sqrt{2 e B}\left(\begin{array}{cc}
0 & \sqrt{n} \\
\sqrt{n} & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{equation*}
H^{(Y, n)}=v_{0} \sqrt{2 e B n} \sigma_{x} \Rightarrow E_{Y, n, \pm}= \pm v_{0} \sqrt{2 e B n},(n>0) \tag{5}
\end{equation*}
$$

(6) The eigenstates of $H^{(Y)}$ are (up to a normalization factor):

$$
\binom{|n\rangle}{ \pm|n-1\rangle}
$$

the representation of these eigenstates in the standard basis is:

$$
\binom{\varphi^{n}(y)}{ \pm \varphi^{n-1}(y)}
$$

remembering that $Y$ shares the same eigenstates with $p_{x}$ yields the following eigenstates:

$$
e^{-i e B Y x}\binom{\varphi^{n}(y)}{ \pm \varphi^{n-1}(y)}
$$

