## Ex5662: Landau Levels in Grafene

## Submitted by: Shmu'el Greenwald and Tom Weiss

## The problem:

The effective Hemiltonian of an electron in a 2-D layer of Grafene is $H=v_{0} \sigma(p-e A)$ when $\sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and $A$ is the vector potential for a pependicular magnetic field $B$ in Landau gauge. Be advised that the standard base for representing the electron is $\mid x, y, m>$, when $m=\downarrow, \uparrow$.
(1) In the lack of a magnetic field, and for a given momentum $p=\left(p_{x}, p_{y}\right)$ what are the eigen energies of the particle?
(2) In Landau gauge $\widehat{Y}=-(1 /(e B)) \widehat{p_{x}}$ is a constant of motion. Write the Hemiltonian $H^{Y}=$ $H_{m, m},\left(p_{y}, y-Y\right)$ of after the seperation of variables. Please note that a linear combination of canonical coordinates $a=(s Q+i P / s) / \sqrt{2}$ is a ladder operator, and write the Hemiltonian in the alternative way $H_{m, m},\left(a, a^{\dagger}\right)$
(3) Define the operator $C=\left(H^{Y}\right)^{2}$ and calculate the eigenvalues $\lambda_{n}=0,1,2 \ldots$ of $C$. Please note that all the eiegenvalue except $n=0$ are degenerated.
(4) Since $C$ is a constant of motion it is possible to perform a second seperation of variables. Write the $2 x 2$ matrix representing $H^{Y, n}$.
(5) Find the energy levels $E_{Y, n, \pm}$ for $n>0$
(6) Write the matrix form of the operator $\hat{I}(t)$ and represent it as a sum of Pauli Matrices. Find the eigenstates and write them in the standard base. Be advised that the quantum state in the standard base in represented by $\bar{\ominus} \rightarrow\left(\ominus_{\uparrow}(x, y), \Psi_{\downarrow}(x, y)\right)$. It is possible to make use of $\varphi^{n}()$ for the eigen functions of a 1-D harmonic oscilator.

## The solution:

Preface: $H=V_{0} \sigma \cdot(p-e \bar{A}), \bar{B}=B \hat{z} \Longrightarrow\{$ Lnadau - Gauge $\} \Longrightarrow \bar{A}=(-B y, 0,0)$
$\sigma=\left(\sigma_{x}, \sigma_{y}\right), p=\left(p_{x}, p_{y}\right) \Longrightarrow \sigma \cdot p=\sigma_{x} p_{x}+\sigma_{y} p_{y}, \sigma \cdot e \bar{A}=-e B y \sigma_{x}$
$\Longrightarrow H=v_{0}\left[\sigma_{x}\left(p_{x}+e B y\right)+\sigma_{y} p_{y}\right)=v_{0}\left(\begin{array}{cc}0 & \left(p_{x}+e B y-i p_{y}\right) \\ \left(p_{x}+e B y+i p_{y}\right. & 0\end{array}\right)$
$\Longrightarrow E= \pm v_{0}\left(p_{x}^{2}+2 p_{x} e B y+(e B y)^{2}+p_{y}^{2}\right)^{1 / 2}= \pm v_{0}\left(\bar{p}^{2}+2 p_{x} e B y+(e B y)^{2}\right)^{1 / 2}$
(1) for $B=0 \Longrightarrow E= \pm v_{0}|\bar{p}|$
(2) $. H=V_{0} \sigma(\bar{p}+e B y \hat{x})$, Let us define $\widehat{Y}=-\widehat{p_{x}} /(e B)$ so that $[H, Y]=0$
$\Longrightarrow H=v_{0}\left[\sigma_{x} e B(-Y+y)+\sigma_{y} p_{y}\right)=v_{0} e B\left(\begin{array}{cc}0 & y-Y-i p_{y} / e B \\ y-Y+i p_{y} / e B & 0\end{array}\right)$
Let us define $Q$ and $P$ as canonical conjugates in the following manner:
$Q=y-Y, P=p_{y}$
and so we can define ladder oppeators $a$ and $a^{\dagger}$ in the following way:
$a=(s Q+i P / s) / \sqrt{2}$
$a^{\dagger}=(s Q-i P / s) / \sqrt{2}$
when $s=\sqrt{2 e B}$ and the Hemiltonian will take the form:
$H=v_{0} \sqrt{2 e B}\left(\begin{array}{cc}0 & a^{\dagger} \\ a & 0\end{array}\right)$
(3) $\left[a, a^{\dagger}\right]=a a^{\dagger}-a^{\dagger} a=1 \Longrightarrow a a^{\dagger}=1+a^{\dagger} a$
$C=\left(H^{Y}\right)^{2}=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}a^{\dagger} a & 0 \\ 0 & a a^{\dagger}\end{array}\right)=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}a^{\dagger} a & 0 \\ 0 & a^{\dagger} a+1\end{array}\right)$

Let us define: $N=a^{\dagger} a$ so that $N|n>=n| n>\Longrightarrow$
$C=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}n & 0 \\ 0 & n+1\end{array}\right)$
$u_{n}=\binom{n}{0}, u_{n+1}=\binom{0}{n+1}, \lambda_{1}=n, \lambda_{2}=n+1$
$E_{n}^{2}=V_{0}^{2} \cdot 2 e B n, \lambda_{n}=n=0,1,2 \ldots$ and $E_{n}$ is of degeneracy 2 for every $n$ but $n=0$
(4) $H^{Y}=V_{0} \cdot \sqrt{2 e B}\left(\begin{array}{cc}0 & a \\ a^{\dagger} & 0\end{array}\right), C=\left(H^{Y}\right)^{2}=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}a^{\dagger} a & 0 \\ 0 & a^{\dagger} a+1\end{array}\right)$ so $[H, C]=0$ so $C$ and $H$ share the same eigen states;
$u_{1}=\binom{\mid n>}{0}, u_{2}=\binom{0}{\mid n+1>}$
we can rearrange the order of the base elements so that
$C=\left(H^{Y}\right)^{2}=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}n & 0 \\ 0 & n+1-1\end{array}\right)=V_{0}^{2} \cdot 2 e B\left(\begin{array}{cc}n & 0 \\ 0 & n\end{array}\right)$
$u_{1}=\binom{\mid n>}{0}, u_{2}=\binom{0}{\mid n>}$
$C=\left(H^{Y}\right)^{2} \Longrightarrow H^{Y}=\sqrt{C}=v_{0} \sqrt{2 e B}\left(\begin{array}{cc}0 & \sqrt{n} \\ \sqrt{n} & 0\end{array}\right)$
we can rearrange the order of the base elements so that
$\sqrt{C}=H^{Y, n}=v_{0} \sqrt{2 e B}\left(\begin{array}{cc}0 & \sqrt{n} \\ \sqrt{n} & 0\end{array}\right) \Longrightarrow$
(5) $H^{Y, n}=V_{0} \cdot \sqrt{2 e B n}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), E_{Y, n}= \pm V_{0} \cdot \sqrt{2 e B n}$
(6) In the first form of the Y blocks, the eigen vectors of the matrix:
$H=v_{0} \sqrt{2 e B}\left(\begin{array}{cc}0 & a^{\dagger} \\ a & 0\end{array}\right)$ is $u_{n}^{+}=\binom{\mid n>}{\mid n+1>}, u_{n}^{-}=\binom{\mid n>}{-। n+1>}$
Using $Q$ and $P$ we see that the given Hemiltonian is analogous to one of a harmonic oscilator, therefore we can rewrite the eigenvectors in terms of the eigen functions of a harmonic oscilator;
$u_{n}^{+}=\binom{\mid \varphi^{n}(y)>}{\mid \varphi^{n-1}(y)>}, u_{n}^{-}=\binom{\mid \varphi^{n}(y)>}{-\mid \varphi^{n-1}(y)>}$
Though since the oscilator is shifted we need to add a phase factor of the form $e^{-i e B Y x}$ so the eigen states of the given Hemiltonian will be:
$\overline{u_{n}^{+}}=\binom{\mid \varphi^{n}(y)>}{1 \varphi^{n-1}(y)>} e^{-i e B Y x}, \overline{u_{n}^{-}}=\binom{1 \varphi^{n}(y)>}{-1 \varphi^{n-1}(y)>} e^{-i e B Y x}$

* if we concider the eigen functions to be normlized, another normlizing factor should be added

