Ex5662: Landau Levels in Grafene

Submitted by: Shmu'el Greenwald and Tom Weiss

The problem:

The effective Hemiltonian of an electron in a 2-D layer of Grafene is $H = v_0 \sigma(p - eA)$ when $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ and A is the vector potential for a pependicular magnetic field B in Landau gauge. Be advised that the standard base for representing the electron is $|x,y,m\rangle$, when $m=\downarrow,\uparrow$.

- (1) In the lack of a magnetic field, and for a given momentum $p = (p_x, p_y)$ what are the eigen energies of the particle?
- (2) In Landau gauge $\hat{Y} = -(1/(eB))\hat{p}_x$ is a constant of motion. Write the Hemiltonian $H^Y =$ $H_{m,m}(p_y,y-Y)$ of after the separation of variables. Please note that a linear combination of canonical coordinates $a = (sQ + iP/s)/\sqrt{2}$ is a ladder operator, and write the Hemiltonian in the alternative way $H_{m,m}(a,a^{\dagger})$
- (3) Define the operator $C = (H^Y)^2$ and calculate the eigenvalues $\lambda_n = 0, 1, 2...$ of C. Please note that all the eigenvalue except n=0 are degenerated.
- (4) Since C is a constant of motion it is possible to perform a second separation of variables. Write the 2x2 matrix representing $H^{Y,n}$.
- (5) Find the energy levels $E_{Y,n,\pm}$ for n > 0
- (6) Write the matrix form of the operator $\hat{I}(t)$ and represent it as a sum of Pauli Matrices. Find the eigenstates and write them in the standard base. Be advised that the quantum state in the standard base in represented by $\bar{\ominus} \to (\ominus_{\uparrow}(x,y), \Psi_{\perp}(x,y))$. It is possible to make use of $\varphi^n()$ for the eigen functions of a 1-D harmonic oscilator.

The solution:

Preface:
$$H = V_0 \sigma \cdot (p - e\bar{A})$$
, $\bar{B} = B\hat{z} \Longrightarrow \{Lnadau - Gauge\} \Longrightarrow \bar{A} = (-By, 0, 0)$

$$\sigma = (\sigma_x, \sigma_y) , p = (p_x, p_y) \Longrightarrow \sigma \cdot p = \sigma_x p_x + \sigma_y p_y , \sigma \cdot e\bar{A} = -eBy\sigma_x$$

$$\Longrightarrow H = v_0[\sigma_x(p_x + eBy) + \sigma_y p_y) = v_0 \begin{pmatrix} 0 & (p_x + eBy - ip_y) \\ (p_x + eBy + ip_y) & 0 \end{pmatrix}$$

$$\Longrightarrow E = \pm v_0(p_x^2 + 2p_x eBy + (eBy)^2 + p_y^2)^{1/2} = \pm v_0(\bar{p}^2 + 2p_x eBy + (eBy)^2)^{1/2}$$

(1) for
$$B = 0 \Longrightarrow E = \pm v_0 |\bar{p}|$$

(2)
$$.H = V_0 \sigma(\bar{p} + eBy\hat{x})$$
, Let us define $\hat{Y} = -\hat{p_x}/(eB)$ so that $[H, Y] = 0$
 $\implies H = v_0[\sigma_x eB(-Y + y) + \sigma_y p_y) = v_0 eB\begin{pmatrix} 0 & y - Y - ip_y/eB \\ y - Y + ip_y/eB & 0 \end{pmatrix}$

1

Let us define Q and P as canonical conjugates in the following mann

$$Q = y - Y, P = p_y$$

and so we can define ladder oppeators a and a^{\dagger} in the following way:

$$a = (sQ + iP/s)/\sqrt{2}$$

$$a^{\dagger} = (sQ - iP/s)/\sqrt{2}$$

when $s = \sqrt{2eB}$ and the Hemiltonian will take the form: $H = v_0 \sqrt{2eB} \begin{pmatrix} 0 & a^{\dagger} \\ a & 0 \end{pmatrix}$

$$H = v_0 \sqrt{2eB} \begin{pmatrix} 0 & a^{\dagger} \\ a & 0 \end{pmatrix}$$

$$\begin{array}{l} (3) \ [a,a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1 \Longrightarrow aa^{\dagger} = 1 + a^{\dagger}a \\ C = \left(H^{Y}\right)^{2} = V_{0}^{2} \cdot 2eB \left(\begin{array}{cc} a^{\dagger}a & 0 \\ 0 & aa^{\dagger} \end{array} \right) = V_{0}^{2} \cdot 2eB \left(\begin{array}{cc} a^{\dagger}a & 0 \\ 0 & a^{\dagger}a + 1 \end{array} \right)$$

Let us define: $N = a^{\dagger}a$ so that $N \mid n > = n \mid n > \Longrightarrow$

$$C = V_0^2 \cdot 2eB \left(\begin{array}{cc} n & 0 \\ 0 & n+1 \end{array} \right)$$

$$u_n = \begin{pmatrix} n \\ 0 \end{pmatrix}$$
, $u_{n+1} = \begin{pmatrix} 0 \\ n+1 \end{pmatrix}$, $\lambda_1 = n$, $\lambda_2 = n+1$

 $E_n^2 = \stackrel{\searrow}{V_0^2} \cdot \stackrel{\swarrow}{2} eBn$, $\lambda_n = \stackrel{\searrow}{n} = 0, 1, 2...$ and E_n is of degeneracy 2 for every n but n = 0

(4)
$$H^Y = V_0 \cdot \sqrt{2eB} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix}$$
, $C = (H^Y)^2 = V_0^2 \cdot 2eB \begin{pmatrix} a^{\dagger}a & 0 \\ 0 & a^{\dagger}a + 1 \end{pmatrix}$ so $[H, C] = 0$

so C and H share the same eigen states;

$$u_1 = \begin{pmatrix} +n > \\ 0 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 0\\ +n+1 > \end{pmatrix}$

we can rearrange the order of the base elements so that

$$C = (H^Y)^2 = V_0^2 \cdot 2eB \begin{pmatrix} n & 0 \\ 0 & n+1-1 \end{pmatrix} = V_0^2 \cdot 2eB \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}$$

$$u_1 = \begin{pmatrix} +n > \\ 0 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 0 \\ +n > \end{pmatrix}$

$$C = (H^Y)^2 \Longrightarrow H^Y = \sqrt{C} = v_0 \sqrt{2eB} \begin{pmatrix} 0 & \sqrt{n} \\ \sqrt{n} & 0 \end{pmatrix}$$

we can rearrange the order of the base elements so that

$$\sqrt{C} = H^{Y,n} = v_0 \sqrt{2eB} \begin{pmatrix} 0 & \sqrt{n} \\ \sqrt{n} & 0 \end{pmatrix} \Longrightarrow$$

(5)
$$H^{Y,n} = V_0 \cdot \sqrt{2eBn} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $E_{Y,n} = \pm V_0 \cdot \sqrt{2eBn}$

(6) In the first form of the Y blocks, the eigen vectors of the matrix:

$$H = v_0 \sqrt{2eB} \begin{pmatrix} 0 & a^{\dagger} \\ a & 0 \end{pmatrix}$$
 is $u_n^+ = \begin{pmatrix} |n\rangle \\ |n+1\rangle \end{pmatrix}$, $u_n^- = \begin{pmatrix} |n\rangle \\ -|n+1\rangle \end{pmatrix}$

Using Q and P we see that the given Hemiltonian is analogous to one of a harmonic oscilator, therefore we can rewrite the eigenvectors in terms of the eigen functions of a harmonic oscilator;

$$u_n^+ = \begin{pmatrix} \varphi^n(y) > \\ \varphi^{n-1}(y) > \end{pmatrix}, u_n^- = \begin{pmatrix} \varphi^n(y) > \\ -\varphi^{n-1}(y) > \end{pmatrix}$$

Though since the oscilator is shifted we need to add a phase factor of the form e^{-ieBYx} so the eigen states of the given Hemiltonian will be:

so the eigen states of the given Hemiltonian will be:
$$\overline{u_n^+} = \begin{pmatrix} \varphi^n(y) > \\ \varphi^{n-1}(y) > \end{pmatrix} e^{-ieBYx}, \overline{u_n^-} = \begin{pmatrix} \varphi^n(y) > \\ -\varphi^{n-1}(y) > \end{pmatrix} e^{-ieBYx}$$

* if we concider the eigen functions to be normlized, another normlizing factor should be added