E485: Interwoven states of 2 spins

Submitted by: Ilan Shemesh

The problem:

There are 2 particles of $\operatorname{spin} \frac{1}{2}$. The spin states of the system are being describe in the standart base:

$|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$

The system has being prepered in the state: $|\psi\rangle \propto|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle$
Notice: The system has being prepered in a symertic state compere to the pormutation, so the tw particles has the same polarization state.
(1) Find the expration of the operator S_{x}, which describe the spin of one of the particles as a matric in the standart base, which has defined abouve.
(2) Find the polarization vector $\vec{M}=\left(\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle\right)$ which describe the polarization state of each particle.
(3) Write the polarization direction \vec{n} and polarization rate $p=\frac{|\vec{M}|}{M_{\max }}$ of the state of one particle.
(4) What is the state vector in the base: up/down, which describes single spin with full polarization in \vec{n} direction.
(5) What will be the system state if the 2 particles are being prepered at a state of full polarization, in \vec{n} direction.

The solution:

(1) The standard base is: $|\uparrow \uparrow\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),|\uparrow \downarrow\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),|\downarrow \uparrow\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),|\downarrow \downarrow\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$,

The system is defined by: $\Psi=\left|S_{a}, S_{b}\right\rangle$.
In order to write the operator S_{x}, which describe the spin of one of the particles, we need to write it, in the standart base witen abouve.

For the first particls: $S_{x}^{1}=S_{x} \otimes \hat{I}=S_{x}=\frac{1}{2}\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$;
And, for the second particle: $S_{x}^{2}=\hat{I} \otimes S_{x}=\frac{1}{2}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
(2) We are being asked to find $\vec{M}=\left(\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle\right)$ for each particle.

For each one of the particles $j=1,2$ we define:
$\left\langle S_{i}^{j}\right\rangle=\langle\Psi| \hat{S}_{i}^{j}|\Psi\rangle$, where $i=x, y, z$ and $j=1,2$ (the particle index)
For the First particle $(j=1)$: let's find the operators $\hat{S_{i}^{1}}$:
When we define:

$$
S_{x}^{1}=\frac{1}{2} \sigma_{x} \otimes \hat{I}, \quad S_{y}^{1}=\frac{1}{2} \sigma_{y} \otimes \hat{I}, \quad S_{z}^{1}=\frac{1}{2} \sigma_{z} \otimes \hat{I}
$$

we obtain the matrices $S_{x}^{1}, S_{y}^{1}, S_{z}^{1}$ in the standart basis,

$$
S_{x}^{1}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad S_{y}^{1}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & -\imath & 0 \\
0 & 0 & 0 & -\imath \\
\imath & 0 & 0 & 0 \\
0 & \imath & 0 & 0
\end{array}\right), \quad S_{z}^{1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Our wave function is given: $\Psi=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$
so:

$$
\begin{aligned}
& \left\langle S_{x}^{1}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{3} \\
& \left\langle S_{y}^{1}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & -\imath & 0 \\
0 & 0 & 0 & -\imath \\
\imath & 0 & 0 & 0 \\
0 & \imath & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=0 \\
& \left\langle S_{z}^{1}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{6} \\
& \overrightarrow{M^{1}}=\frac{1}{6}(2,0,1)
\end{aligned}
$$

For the Second particle $(j=2)$: let's find the operators \hat{S}_{i}^{2} :

When we define:

$$
S_{x}^{2}=\hat{I} \otimes \frac{1}{2} \sigma_{x}, \quad S_{y}^{2}=\hat{I} \otimes \frac{1}{2} \sigma_{y}, \quad S_{z}^{2}=\hat{I} \otimes \frac{1}{2} \sigma_{z}
$$

we obtain the matrices $S_{x}^{2}, S_{y}^{2}, S_{z}^{2}$ in the standart basis,

$$
S_{x}^{2}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad S_{y}^{2}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -\imath & 0 & 0 \\
\imath & 0 & 0 & 0 \\
0 & 0 & 0 & -\imath \\
0 & 0 & \imath & 0
\end{array}\right), \quad S_{z}^{2}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

so:

$$
\begin{aligned}
& \left\langle S_{x}^{2}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{3} \\
& \left\langle S_{y}^{2}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & -\imath & 0 & 0 \\
\imath & 0 & 0 & 0 \\
0 & 0 & 0 & -\imath \\
0 & 0 & \imath & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=0 \\
& \left\langle S_{z}^{2}\right\rangle=\frac{1}{6}\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{2} \\
& \overrightarrow{M^{2}}=\frac{1}{6}(2,0,3)
\end{aligned}
$$

(3) Now we need to find the polarization direction \vec{n} and polarization rate $p=\frac{|\vec{M}|}{M_{\max }}$.

If a spin is completely polorized so, it point to a spesifice direction. in case of spine half the maximum Amplitude of this vector is $1 / 2$, as a result of stern-gerlach experience $\Rightarrow M_{\max }=1 / 2$, (for spin one we get: $M_{\max }=1$)

So, for the First spin we get:

$$
\left|\overrightarrow{M^{1}}\right|=\frac{\sqrt{5}}{6}, \quad \Rightarrow \quad \overrightarrow{n^{1}}=\frac{\vec{M}}{|\vec{M}|}=\frac{1}{\sqrt{5}}(2,0,1) ; \quad p^{1}=\frac{|\vec{M}|}{M_{\max }}=\frac{\sqrt{5}}{3}
$$

And, for the Second spin we get:

$$
\left|\overrightarrow{M^{2}}\right|=\frac{\sqrt{13}}{6}, \quad \Rightarrow \quad \overrightarrow{n^{2}}=\frac{\vec{M}}{|\vec{M}|}=\frac{1}{\sqrt{13}}(2,0,3) ; \quad p^{2}=\frac{|\vec{M}|}{M_{\max }}=\frac{\sqrt{13}}{3}
$$

(4) What is the state vector in the base: $u p / d o w n$?

The base up/down is:

$$
|\uparrow\rangle \mapsto\binom{1}{0} \quad|\downarrow\rangle \mapsto\binom{0}{1}
$$

we will take spin $u p$ which is $\binom{1}{0}$ and spin it around y ases in θ :

$$
\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)\binom{1}{0}=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}
$$

For the First case:

$$
\begin{aligned}
& \hat{n_{1}}=\frac{1}{\sqrt{5}}(2,0,1) \quad \text { Therefore: } \\
& \cos \theta=\frac{1}{\sqrt{5}}, \quad \sin \theta=\frac{2}{\sqrt{5}} \Rightarrow \\
& \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}= \pm \sqrt{\frac{1+\frac{1}{\sqrt{5}}}{2}}, \quad \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}= \pm \sqrt{\frac{1-\frac{1}{\sqrt{5}}}{2}} \\
& \text { while } \quad \theta_{1}=\arctan (2)
\end{aligned}
$$

Hence:

$$
\hat{\psi}_{1}=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\binom{\sqrt{\frac{1+\frac{1}{\sqrt{5}}}{2}}}{\sqrt{\frac{1-\frac{1}{\sqrt{5}}}{2}}}
$$

For the Second case:

$$
\begin{aligned}
& \hat{n_{2}}=\frac{1}{\sqrt{13}}(2,0,3) \quad \text { Therefore: } \\
& \cos \theta=\frac{3}{\sqrt{13}}, \quad \text { and } \quad \sin \theta=\frac{2}{\sqrt{13}} \Rightarrow \\
& \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}= \pm \sqrt{\frac{1+\frac{3}{\sqrt{13}}}{2}} \quad \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}= \pm \sqrt{\frac{1-\frac{3}{\sqrt{13}}}{2}} \\
& \text { while } \quad \theta_{2}=\arctan \left(\frac{2}{3}\right)
\end{aligned}
$$

Hence:

$$
\hat{\psi}_{2}=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\binom{\sqrt{\frac{1+\frac{3}{\sqrt{13}}}{2}}}{\sqrt{\frac{1-\frac{3}{\sqrt{13}}}{2}}}
$$

(5) What will be the system state if the 2 particles are being prepered at: (a) $\hat{n_{1}}$, (b) $\hat{n_{2}}$? Here there are 2 particles. The wave function will be tensor product between them:

$$
|\Psi\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \otimes\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\left(\begin{array}{c}
\cos ^{2} \frac{\theta}{2} \\
\frac{1}{2} \sin \theta \\
\frac{1}{2} \sin \theta \\
\sin ^{2} \frac{\theta}{2}
\end{array}\right)
$$

So, For (a) we will get: $\left|\Psi_{a}\right\rangle=\left(\begin{array}{c}\cos ^{2} \frac{\theta}{2} \\ \frac{1}{2} \sin \theta \\ \frac{1}{2} \sin \theta \\ \sin ^{2} \frac{\theta}{2}\end{array}\right)=\left(\begin{array}{c}\frac{1}{2}\left(1+\frac{1}{\sqrt{5}}\right) \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{2}\left(1-\frac{1}{\sqrt{5}}\right)\end{array}\right)$
And, For (b) we will get: $\left|\Psi_{b}\right\rangle=\left(\begin{array}{c}\frac{1}{2}\left(1+\frac{3}{\sqrt{13}}\right) \\ \frac{1}{\sqrt{13}} \\ \frac{1}{\sqrt{13}} \\ \frac{1}{2}\left(1-\frac{3}{\sqrt{13}}\right)\end{array}\right)$

Remarks:

All the results are the same for both particles.
The results for the "first" particle are correct and the results for the "second" particle are wrong.

