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The problem:

A particle with mass M and charge e is placed on a spherical shell with radius R. Note that the
standard observation variables that describe the state of the particle are (θ, ϕ, Lx, Ly, Lz). In this
question we assume that the particle can be excited from the ground state to the first energy level,
but not beyond that, so the states space is four dimensional. Mark the states of the base with
|0〉 , |↑〉 , |l〉 and |↓〉.

(1) What is the energy of each of the base states. Define the ground state as zero-energy.
The particle is prepared as ”concentrated” as possible at the north pole of the shell.
(2) Write the wave function ψ (θ, ϕ) of the particle.
The state you wrote is not stationary.
The particle oscillates between the ”north pole” and the ”south pole”.
(3) What is the time period, T0, of the oscillations?
First case: We add a constant electric field, ε, in the z direction.
(4) Write Formally the perturbation element using the observation variables.
(5) What is the time period, T, of the oscillations?
Second case: We add a constant magnetic field, B, in the x direction.
(6) Write Formally the perturbation element using the observation variables.
(7) Find the value of B so that in Time T0/2 the particle will be in the initial state.

The solution:

(1) The Hamiltonian of a particle with mass M restricted to move on a spherical shell with radius
R is given by:

Ĥ =
L̂2

2MR2

The solutions for this Hamiltonian are the spherical harmonic functions. We know that the particle
can be in the ground state or the first excited state, and that’s why l=0,1. The eigenstates are:

|0〉 = Y 0,0, |l〉 = Y 1,0, |↑〉 = Y 1,1, |↓〉 = Y 1,−1

and the energies are:

El,m =
l (l + 1)

2MR2

In our case we get:

Ĥ |0〉 = 0 = E0,0, Ĥ |l〉 = Ĥ |↑〉 = Ĥ |↓〉 =
1

MR2
= E1,0 = E1,1 = E1,−1

(2) The particle is prepared as concentrated as possible at the “north pole” of the shell. That’s why
we should look for a function that is a superposition of the eigenfunctions and gets its maximum
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absolute value at the “north pole”. The only function that satisfies this condition is: ψ = 1 + cos θ.
Choosing this function avoids the case that we would get if we choose ψ = cos θ, which would give
us a maximum in both, the “north pole” and the “south pole”. Let’s express the wave function in
terms of the eigenfunctions:

ψ =
√

3Y 0,0 + Y 1,0

The normalized function is given by:

ψ =
1

2

(√
3Y 0,0 + Y 1,0

)
(3) Let’s express ψ (t) using the evolution operator, taking in account that E0,0 = 0, E1,0 = 1

MR2 :

ψ (t) =
1

2

(√
3Y 0,0 + Y 1,0e−i

1
MR2 t

)
In order to find the period time of the oscillations, we will use the relation ω = E1,0 −E0,0 = 1

MR2 .
Using the fact that T = 2π

ω , we get:

T0 = 2πMR2

(4) Adding an electric field in the z direction creates a potential V = −eεR cos θ . We want to find

this perturbation matrix elements. Keeping in mind that V = −eεR
√

4π
3 Y

1,0, we can realize that

this perturbation couples only the eigenfunctions Y 0,0, Y 1,0, and all other couplings vanish. From
calculation of this coupling we get:

〈0|V |l〉 = 〈l|V |0〉 =

∫
−Y 0,0eεR

√
4π

3
Y 1,0Y 1,0dΩ = −eεR√
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(5) According to what we found, we can write the Hamiltonian matrix as follows:

Ĥ =


0 − eεR√

3
0 0

− eεR√
3

1
MR2 0 0

0 0 1
MR2 0

0 0 0 1
MR2


Examining only the subspace of the states |0〉 , |l〉we get:

Ĥ =

(
0 − eεR√

3

− eεR√
3

1
MR2

)

In order to express this Hamiltonian using Pauli matrices, we would like to gauge the Hamiltonian
as follows:
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Ĥ =

(
− 1

2MR2 − eεR√
3

− eεR√
3

1
2MR2

)

which yields:

Ĥ = −eεR√
3
σx −

1

2MR2
σz

On the other hand, we know that Ĥ = ~Ω · ~S and ~S = 1
2 (σx, σy, σz), which yields:

~Ω =

(
−2eεR√

3
, 0,− 1

MR2

)
In effect, the frequency of the oscillations is the norm of this vector:

ω =
∣∣∣~Ω∣∣∣ =

√
4e2ε2R2

3
+

1

M2R4

We recall that T = 2π
ω , and that’s why

T =
2π√

4e2ε2R2

3 + 1
M2R4

(6) Adding a magnetic field, while taking in account that this is a spinless particle, requires adding
of the Zeeman term:

ĤZeeman = − e

2M
~B · ~L

Note that we neglect the diamagnetic term, because this is a second order perturbation.

Because the magnetic field is in the x direction, the perturbation term is:

V̂ = − e

2M
BL̂x

(7) Now, the Hamiltonian is given by:

Ĥ =
L̂2

2MR2
− e

2M
BL̂x

The term of the state |0〉 in the wave function is not affected by the operator L̂x, because it has a
spherical symmetry. Therefore:

ψ (t) = e−i
ˆ
L2

2MR2 tei
e

2M
BL̂xt 1

2

(√
3 |0〉+ |l〉

)
=

1

2

(√
3 |0〉+ e−i

1
MR2 tei

e
2M

BL̂xt |l〉
)
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We know that a rotation operator is given by R = e−i
~L·~φand that φ = Ωt. That’s why the term

ei
e

2M
BL̂xt represents a rotation operator around the (-x) axis with Ω = eB

2M .

It’s easy to see that at t = T0
2 the wave function is:

ψ

(
t =

T0
2

)
=

1

2

(√
3 |0〉 − ei

e
2M

BL̂xt |l〉
)

In order that at this time the wave function will return to it’s initial state, we need that the rotation
operator will rotate the state |l〉 by 180 degrees around the (-x) axis.
Therefore:

Ω
T0
2

= π

After substituting we get:

eB

2M

2πMR2

2
=
πeR2B

2
= π

Finally we get:

B =
2

eR2
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