E472: Motion on a spherical shell

Submitted by: Andrey Gouternakht

The problem:

Given a spherical shell with radius R;and a particle with mass M and a charge e. In $t=-\infty$ the particle is in the ground state.
(1) Find the wave function: $\Psi(\theta, \varphi)$

Given an electric pulse:

$$
\varepsilon(t)=\varepsilon_{0} e^{-\frac{1}{2}(t / r)^{2}}
$$

(2) Which energy levels can the particle pass to?
(3) What is the probability to find the particle not in the ground state?

The solution:

(1) The Hamiltonian of the particle with mass M restricted to move on a sphere with radius R (lets us assume for simplisity of the solution that $R=1$) is given by:

$$
\hat{H}_{0}=\frac{\hat{p}^{2}}{2 M}=\frac{\hat{L}^{2}}{2 M R^{2}}=\frac{\hat{L}^{2}}{2 M}
$$

the system is found at the ground state, therefore $l=0$ and the wave function of the system is:

$$
\Psi(\mathrm{r}, \theta, \varphi)=F(R) Y_{00} \quad E_{l m}=\frac{\hbar^{2} l(l+1)}{2 M}
$$

(2) If the electric pulse is turn on the Hamiltonian of the system is parturbated by the \hat{H}^{\prime} :

$$
\begin{aligned}
& \hat{H}=\hat{H}_{0}+\hat{H}^{\prime} \\
& \hat{H}^{\prime}=-q \varepsilon(t) \hat{z}=-q \varepsilon(t) \cos (\theta)=-q \varepsilon(t) \sqrt{\frac{4 \pi}{3}} Y_{10}
\end{aligned}
$$

the correction matrix is given by:

$$
\langle 00| \hat{H}^{\prime}|l m\rangle=-q \varepsilon_{0} e^{-\frac{1}{2}(t / r)^{2}} \sqrt{\frac{4 \pi}{3}} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} Y_{00} Y_{10} Y_{l m} \sin \theta d \theta
$$

the integral vanishes for all $|l m\rangle$ except $|l m\rangle=|10\rangle$, that is to say that system can pass to the first excited level: $(l=1$, $m=0$)

$$
\langle 00| \hat{H}^{\prime}|01\rangle=\frac{-q \varepsilon(t)}{\sqrt{3}} \Rightarrow \hat{V}=\frac{-q \varepsilon_{0} e^{-\frac{1}{2}(t / r)^{2}}}{\sqrt{3}} \delta_{l, 1 ; m, 0}
$$

So, only $E_{00} \rightarrow E_{10}$, that is to say $0 \rightarrow \frac{\hbar^{2}}{M}$, transition is possible!
(3) The particle can be found only at two different states: $|00\rangle$ and $|10\rangle$, so the probability of the state $|10\rangle$ is:

$$
P_{10}=\frac{1}{\hbar^{2}}\left|\int_{-\infty}^{\infty} V_{01} e^{i \Omega_{10} t} d t\right|^{2}=\frac{1}{\hbar^{2}}\left|\int_{-\infty}^{\infty} \frac{-q \varepsilon_{0} e^{-\frac{1}{2}(t / r)^{2}}}{\sqrt{3}} e^{i \Omega_{10} t} d t\right|^{2}=\frac{\left(q \varepsilon_{0}\right)^{2}}{3 \hbar^{2}}\left|\int_{-\infty}^{\infty} e^{-\frac{1}{2}(t / r)^{2}} e^{i \frac{\hbar}{M} t} d t\right|^{2}
$$

in last transition we used:

$$
\Omega_{10}=\frac{1}{\hbar}\left(E_{1}-E_{0}\right)=\frac{\hbar}{M}
$$

in order to solve the aforementioned integral one may use the solved integral (Schaum's handbook 15.75):

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x=\sqrt{\frac{\pi}{a}} e^{\left(b^{2}-4 a c\right) / 4 a} \\
& P_{10}=\frac{\left(q \varepsilon_{0}\right)^{2}}{3 \hbar^{2}}\left(2 \tau^{2} \pi\right) e^{-\frac{\hbar^{2} \tau^{2}}{M^{2}}}
\end{aligned}
$$

Do not assume that $R=1$.
The exercise shold be solved using known results from perturbation theory.

