E4710: Motion on a spherical shell

Submitted by: Kurtser Eitan

The problem:

Spherical shell with radius R and a particle with mass M and charge q. In this question you have to assume that the particle can be existed from the ground state $(l=0)$ to the first energy level $(l=1)$, but not beyond that, which means that the state space is four dimensional.
A particle is prepared as "concentrated" as possible in the "north pole" of the shell.
(1) Write the wave function $\Psi(\theta, \phi)$.
(2) Find the periodic time of the oscillations.

The polarization of the system is defined as $P(t)=\langle\Psi(t)| \hat{z}|\Psi(t)\rangle$
(3) Find the polarization as function of time $P(t)$.

Given: $Y_{00}=\frac{1}{\sqrt{4 \pi}} ; Y_{10}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta ; Y_{1, \pm 1} \propto \sin \theta$

The solution:

(1) We want that probability $|\Psi|^{2}$ to find the particle at north pole $(\theta=0)$ will be maximal, so we look for a solution of the following form $\Psi \sim 1+\cos \theta$

$$
\begin{aligned}
& \Psi=c(1+\cos \theta)=c\left(\sqrt{3} Y_{00}+Y_{10}\right) \\
& |\Psi\rangle=c(\sqrt{3}|00\rangle+|10\rangle)
\end{aligned}
$$

After Normalization: $\int|\langle\Psi \mid \Psi\rangle|^{2} d \Omega=1$ we find that $c=\frac{1}{2}$ and we get

$$
\Psi=\frac{1}{2}\left(\sqrt{3} Y_{00}+Y_{10}\right)
$$

(2) The energy states of the particle of the shell $E_{l}=\frac{l(l+1)}{2 M R^{2}}$. We are restricted to $l=0,1$ so the energies are $E_{0}=0$ and $E_{1}=\frac{1}{M R^{2}}$. The time depended wave function is

$$
\Psi(t)=\frac{\sqrt{3}}{2} \mathrm{e}^{-i E_{0} t} Y_{00}+\frac{1}{2} \mathrm{e}^{-i E_{1} t} Y_{10}=\frac{\sqrt{3}}{2} Y_{00}+\frac{1}{2} \mathrm{e}^{-i \frac{1}{M R^{2}} t} Y_{10}
$$

we can see the function is periodic with frequency $\omega=E_{1}=\frac{1}{M R^{2}}$, so the periodic time of oscillations is

$$
T=2 \pi M R^{2}
$$

(3) To find the polarization we use $z=R \cos \theta=\sqrt{\frac{3}{4 \pi}} R Y_{10}$

$$
\begin{aligned}
& \langle\Psi| \cos \theta|\Psi\rangle=\langle\cos \theta\rangle=\left(\frac{\sqrt{3}}{2}\langle 00|+\frac{1}{2} \mathrm{e}^{i \omega t}\langle 10|\right) \cos \theta\left(\frac{\sqrt{3}}{2}|00\rangle+\frac{1}{2} \mathrm{e}^{-i \omega t}|10\rangle\right) \\
& \cos \theta|00\rangle=\sqrt{\frac{4 \pi}{3}} Y_{10} \frac{\sqrt{3}}{2} Y_{00}=\frac{1}{2} Y_{10}=|10\rangle \\
& \langle\cos \theta\rangle=\alpha\langle 00 \mid 10\rangle+\frac{1}{4} \mathrm{e}^{i \omega t}\langle 10 \mid 10\rangle+\frac{1}{4} \mathrm{e}^{-i \omega t}\langle 10 \mid 10\rangle+\beta\langle 10| \cos \theta|10\rangle
\end{aligned}
$$

the first and the last parts are zero and we get

$$
\begin{aligned}
& \langle\cos \theta\rangle=\frac{1}{2} \cos (\omega t) \\
& P(t)=\langle\Psi| \hat{z}|\Psi\rangle=\frac{1}{2} R \cos (\omega t)
\end{aligned}
$$

