Ex4640: Angular momentum of wave function
 Submitted by: Dan Shaked

The problem:

The wave function of a particle is $\psi(x, y, z)=f(r) z(z+1)$.

1. Write the wave function in $|r, \theta, \varphi\rangle$ representation.
2. Write the wave function in $|r, \ell, m\rangle$ representation.

Given that:

$$
\begin{aligned}
& Y^{00}=\sqrt{\frac{1}{4 \pi}}, \quad Y^{10}=\sqrt{\frac{3}{4 \pi}} \cos (\theta), \quad Y^{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2}(\theta)-1\right), \\
& M_{n}=\int_{0}^{\infty} r^{n}(f(r))^{2} d r
\end{aligned}
$$

3. Write a condition on M_{6} and M_{4} so that the wave function will be normalized.

Following it is given: $M_{6}=\frac{5}{8 \pi}$
4. What is a probability of the particle to be on spherical state $(\ell=0)$?
5. What are the possible non-zero probability values of L_{z} ?
6. What are the possible non-zero probability values of L_{x} ?
7. Find the probability of the particle to be on polar state $(\ell=1)$ with $L_{x}=1$.

The solution:

1. $\psi(r, \theta, \varphi)=f(r) r^{2} \cos ^{2} \theta+f(r) r \cos \theta$
2. $\psi(r, \ell, m)=f(r) r^{2} \sqrt{\frac{16 \pi}{45}} Y^{20}+f(r) r \sqrt{\frac{4 \pi}{3}} Y^{10}+f(r) r^{2} \sqrt{\frac{4 \pi}{9}} Y^{00}$
3. The normalization condition is

$$
\|\langle r m \mid r m\rangle\|^{2}=\left(\frac{16 \pi}{45}+\frac{4 \pi}{9}\right) \int_{0}^{\infty} r^{6} f(r) d r+\left(\frac{4 \pi}{3}\right) \int_{0}^{\infty} r^{4} f(r) d r=1
$$

placing the definitions of M_{n} we get

$$
\frac{4 \pi}{5} M_{6}+\frac{4 \pi}{3} M_{4}=1
$$

4. $\|\langle r 00 \mid \psi\rangle\|^{2}=\frac{4 \pi}{9} M_{6}=\frac{5}{18}$
5. $L_{z}=0$ with probability 1 .
6. I'll show that the possible values are $L_{x}=0, \pm 1, \pm 2$:

In order to find the possible values of L_{x} we'll go through the subspaces $\ell=0,1,2$.

- For $\ell=0$ it is clear that we can get the value $L_{x}=0$ from the possibility to get Y^{00}.
- In the subspace $\ell=1$ we know that

$$
Y^{10}=\frac{1}{\sqrt{2}}\left(Y_{x}^{11}-Y_{x}^{1-1}\right)
$$

Hence we get that it is possible to get $L_{x}= \pm 1$.

- The case of $\ell=2$ is more complicated, therefore we sall prove by contridiction that it is possible to get $L_{x}= \pm 2$:
Let us assume that the only possible values of L_{x} are $-1,0,1$. We know that $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=2 L_{x}^{2}$. Then we get $L^{2}=2$ is the maximum value. On the other hand we know that $\|\langle r 20 \mid \psi\rangle\|^{2}>0$ and in the $\ell=2$ subspcae $L^{2}=\ell(\ell+1)=6$. Therefore we must conclude that the our first assumption is false and that the values $L_{x}= \pm 2$ are possible.
Q.E.D.

7. $\ell=1$:

$$
\|\left\langle L_{x}=1\right| \psi\left\|^{2}=\right\|\left\langle\overrightarrow{e_{x}}\right| \psi\left\|^{2}=\frac{4 \pi}{3} M_{4}\right\|\left\langle\overrightarrow{e_{x}}\right| \Uparrow \|^{2}=\frac{1}{4}
$$

