Ex464: Angular momentum of wave function

Submitted by: Alexander Elikashvili

The problem:

The wave function of a particle is $\psi(x, y, z)=f(r) z(z+1)$.
(1) Write the wave function in $|r, \theta, \phi\rangle$ representation.
(2) Write the wave function in $|r, \ell, m\rangle$ representation.

Given that:
$Y^{00}=\sqrt{\frac{1}{4 \pi}}, \quad Y^{10}=\sqrt{\frac{3}{4 \pi}} \cos (\theta), \quad Y^{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2}(\theta)-1\right)$,
$M_{n}=\int_{0}^{\infty} r^{n}(f(r))^{2} d r, \quad M_{6}=\frac{5}{8 \pi}$
(3) Write a condition on M_{6} and M_{4} so that the wave function will be normalized.
(4) What is a probability of the particle to be on spherical state $(\ell=0)$.
(5) What are the possible non-zero probability values of L_{x} ?
(6) What are the possible non-zero probability values of L_{z} ?
(7) Find the probability of the particle to be on polar state $(\ell=1)$ with $L_{x}=1$.

The solution:

(1) Writing the wave function in spherical coordinates one gets:

$$
\langle r, \theta, \phi \mid \Psi\rangle=f(r) r^{2} \cos ^{2}(\theta)+f(r) r \cos (\theta)=\sqrt{\frac{16 \pi}{45}} r^{2} f(r) Y^{20}(\theta, \phi)-\sqrt{\frac{4 \pi}{9}} r^{2} f(r) Y^{00}(\theta, \phi)+\sqrt{\frac{4 \pi}{3}} r f(r) Y^{10}(\theta, \phi)
$$

(2)

$$
\langle r, \ell, m \mid \Psi\rangle=\int\left\langle r, \ell, m \mid r^{\prime}, \theta, \phi\right\rangle\left\langle r^{\prime}, \theta, \phi \mid \Psi\right\rangle r^{\prime 2} d r^{\prime} d \Omega=\sqrt{\frac{16 \pi}{45}} r^{3} f(r) \delta_{\ell 2} \delta_{m 0}-\sqrt{\frac{4 \pi}{9}} r^{3} f(r) \delta_{\ell 0} \delta_{m 0}+\sqrt{\frac{4 \pi}{3}} r^{2} f(r) \delta_{\ell 1} \delta_{m 0}
$$

Or in abstract form:

$$
|\Psi\rangle=\sum_{r}\left(\psi_{20}(r)|r, 2,0\rangle+\psi_{00}(r)|r, 0,0\rangle+\psi_{10}(r)|r, 1,0\rangle\right)
$$

(3)

$$
\langle\Psi \mid \Psi\rangle=\sum_{r, \ell, m}|\langle r, \ell, m \mid \Psi\rangle|^{2}=\frac{16 \pi}{45} M_{6}+\frac{4 \pi}{9} M_{6}+\frac{4 \pi}{3} M_{4}=1
$$

By substituting the value of M_{6} in the above expression one finds: $M_{4}=\frac{3}{8 \pi}$.
(4)

$$
P=\sum_{r}|\langle r, 0,0 \mid \Psi\rangle|^{2}=\frac{4 \pi}{9} \int_{0}^{\infty} r^{6} f^{2}(r) d r=\frac{4 \pi}{9} M_{6}=\frac{5}{18}
$$

(5) This section will be solved by examining each sub-space $(\ell=0, \ell=1, \ell=2)$ separately.

In $\ell=0$ sub-space:
It is trivial case when $L_{x}=0$ is the only value.

In $\ell=1$ sub-space:
Notations used:
Standart basis: $\left|m_{x}=-1\right\rangle,\left|m_{x}=0\right\rangle,\left|m_{x}=1\right\rangle \quad$ Linear basis: $\left|m_{x}=0\right\rangle,\left|m_{y}=0\right\rangle,\left|m_{z}=0\right\rangle$

$$
|\Psi\rangle \propto\left|m_{z}=0\right\rangle=\left\langle m_{x}=-1 \mid m_{z}=0\right\rangle\left|m_{x}=-1\right\rangle+\left\langle m_{x}=1 \mid m_{z}=0\right\rangle\left|m_{x}=1\right\rangle
$$

If $\left\langle m_{x}=-1 \mid m_{z}=0\right\rangle=0$ it would mean that $\left|m_{z}=0\right\rangle \propto\left|m_{x}=1\right\rangle$
If $\left\langle m_{x}=1 \mid m_{z}=0\right\rangle=0$ it would mean that $\left|m_{z}=0\right\rangle \propto\left|m_{x}=-1\right\rangle$
If $\left\langle m_{x}=-1 \mid m_{z}=0\right\rangle=0$ and $\left\langle m_{x}=1 \mid m_{z}=0\right\rangle=0$ it would mean that $\left|m_{z}=0\right\rangle=0$
All three cases above are impossible, hence $\left\langle m_{x}=-1 \mid \Psi\right\rangle \neq 0$ and $\left\langle m_{x}=1 \mid \Psi\right\rangle \neq 0$, or in other words $L_{x}= \pm 1$ has non-zero probability.

In $\ell=2$ sub-space:

$$
\left\langle L^{2}\right\rangle=\left\langle L_{x}^{2}\right\rangle+\left\langle L_{y}^{2}\right\rangle+\left\langle L_{z}^{2}\right\rangle=\ell(\ell+1)=6
$$

Notice that $\left\langle L_{z}^{2}\right\rangle=0$ because $\hat{L}_{z}|\Psi\rangle=0|\Psi\rangle$ and $\left\langle L_{x}^{2}\right\rangle=\left\langle L_{y}^{2}\right\rangle$ because of symmetry considerations, therefore $\left\langle L^{2}\right\rangle=2\left\langle L_{x}^{2}\right\rangle$, which implies that $\left\langle L_{x}^{2}\right\rangle=3$.

Now suppose that getting $L_{x}= \pm 2$ has zero probability, then one would get:

$$
\left\langle L_{x}^{2}\right\rangle=(-1)^{2} P\left(L_{x}=-1\right)+1^{2} P\left(L_{x}=1\right)<3
$$

Therefore values $L_{x}= \pm 2$ must have non-zero probabilities. Final conclusion implies that L_{x} can get values -2,-1,0,1,2.
(6)

$$
\hat{L}_{z}|\Psi\rangle=\sum_{r}\left(\psi_{20}(r) \hat{L}_{z}|r, 2,0\rangle+\psi_{00}(r) \hat{L}_{z}|r, 0,0\rangle+\psi_{10}(r) \hat{L}_{z}|r, 1,0\rangle\right)=0|\Psi\rangle
$$

$$
\begin{equation*}
\left\langle r, \ell=1, m_{x}=1 \mid \Psi\right\rangle=\sum_{r^{\prime}, \ell^{\prime}, m_{z}}\left\langle r, \ell=1, m_{x}=1 \mid r^{\prime}, \ell^{\prime}, m_{z}\right\rangle\left\langle r^{\prime}, \ell^{\prime}, m_{z} \mid \Psi\right\rangle=\psi_{10}(r)\left\langle m_{x}=1 \mid m_{z}=0\right\rangle \tag{7}
\end{equation*}
$$

One can express $\left\langle m_{x}=1\right|=\frac{1}{2}(1, \sqrt{2}, 1)$ and $\left|m_{z}=0\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, which implies $\left\langle m_{x}=1 \mid m_{z}=0\right\rangle=\frac{1}{\sqrt{2}}$, also from section
(2) it is clear that $\psi_{10}(r)=\sqrt{\frac{4 \pi}{3}} r^{2} f(r)$.

$$
P=\sum_{r}^{\infty}\left|\left\langle r, \ell=1, m_{x}=1 \mid \Psi\right\rangle\right|^{2}=\int_{0}^{\infty} \frac{4 \pi}{3} r^{4} f^{2}(r)\left|\left\langle m_{x}=1 \mid m_{z}=0\right\rangle\right|^{2} d r=\frac{2 \pi}{3} M_{4}=\frac{1}{4}
$$

