E464: Angular momentum of wave function

Submitted by: Mor Yaakobi

The problem:

A particle is described by the wave function $\psi(x, y, z)=f(r) z(z+1)$.
(1) Express the wave function in terms of $|r, \theta, \phi\rangle$.
(2) Express the wave function in terms of $|r, l, m\rangle$.

Given $Y_{00}=\sqrt{\frac{1}{4 \pi}}, Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta, Y_{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)$
Let us define $M_{n}=\int_{0}^{\infty} r^{n}(f(r))^{2} d r$
(3) Write a condition for M_{4}, M_{6} so that the wave function will be normalized.

Given $M_{6}=\frac{5}{8 \pi}$
(4) What is the probability of finding the particle to be in a spherical state? $(l=0)$
(5) What are the possible values for measuring L_{x} ?
(6) What are the possible values for measuring L_{z} ?
(7) What is the probability of finding the particle to be in a polar state $(l=0)$, for $L_{x}=1$?

The solution:

(1) Converting cartesian to spherical coordinates one gets

$$
\psi(r, \theta, \phi)=f(r) r^{2} \cos ^{2} \theta+f(r) r \cos \theta
$$

(2) Using the orthonormal basis of the Hilbert space $Y_{l m}$ one gets

$$
\psi(r, l, m)=f(r) r^{2}\left(\sqrt{\frac{16 \pi}{45}} Y^{20}+\sqrt{\frac{4 \pi}{9}} Y^{00}\right)+f(r) r \sqrt{\frac{4 \pi}{3}} Y^{10}
$$

For simplicity, let us write the above expression schematically:

$$
\psi(r, l, m)=f_{0}(r) Y^{00}+f_{1}(r) Y^{10}+f_{2}(r) Y^{20}
$$

(3) Normalization requirement (using the schematic expression):

$$
\langle\psi \mid \psi\rangle=\sum_{i=0}^{2} \int\left|f_{i}(r)\right|^{2} r^{2} d r=P_{0}+P_{1}+P_{2}=\frac{4 \pi}{9} M_{6}+\frac{4 \pi}{3} M_{4}+\frac{16 \pi}{45} M_{6}=1
$$

(4) Let us sum over the probabilities of being in a spherical state $(l=0)$

$$
P=\left|\left\langle f_{0}(r) Y^{00} \mid \psi\right\rangle\right|^{2}=P_{0}=\frac{4 \pi}{9} M_{6}=\frac{5}{18}
$$

(5) The possible values of L_{x} regarding the above wave function are $-2,-1,0,1,2$. In order to find the values whose probability to be measured is bigger than 0 , we will check if the aforementioned values are eigenvalues of L_{x}.

$$
L_{x}=\frac{1}{2}\left(L_{+}+L_{-}\right)
$$

Let us examine each term of $Y^{l m}$ separately:
Y^{00} is an eigenstate of L_{x}, with an eigenvalue of 0 , thus is probable to be measured.
Apply L_{x} on the states $Y^{1, m}$, one gets the following eigenstates:

$$
Y_{x}^{11} \mapsto \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right) \quad Y_{x}^{10} \mapsto \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad Y_{x}^{1-1} \mapsto \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right)
$$

with the eigenvalues of $1,0,-1$ accordingly.

$$
Y^{10}=\frac{1}{\sqrt{2}}\left(Y_{x}^{11}-Y_{x}^{1-1}\right)
$$

Thus $-1,1$ are probable to be measured.
Remains find the representation of Y^{20} in the basis where L_{x} is diagonal. Using the same method, one gets

$$
Y_{x}^{22} \mapsto \frac{1}{2}\left(\begin{array}{c}
1 \\
2 \\
\sqrt{6} \\
2 \\
1
\end{array}\right) \quad Y_{x}^{20} \mapsto \frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-\frac{2}{\sqrt{6}} \\
0 \\
1
\end{array}\right) \quad Y_{x}^{2-2} \mapsto \frac{1}{2}\left(\begin{array}{c}
1 \\
-2 \\
\sqrt{6} \\
-2 \\
1
\end{array}\right)
$$

with the eigenvalues of $2,0,-2$ accordingly.

$$
Y^{20}=c_{1} Y_{x}^{22}+c_{2} Y_{x}^{22}+c_{2} Y_{x}^{2-2}
$$

Thus $-2,2$ are also probable to be measured.
(6) Using r, l, m representation, L_{z} is determined to be diagonal. it follows that $L_{z}|m\rangle=|m\rangle$, and therefore the only possible value for measuring L_{z} is 0 .
(7) The probability of measuring $L_{x}=1$ when the particle is in a polar state $(l=1)$ is:

$$
P=|\langle\Uparrow \mid \hat{\downarrow}\rangle|^{2} \times\left|\left\langle f_{1}(r) Y^{10} \mid \psi\right\rangle\right|^{2}=|\langle\Uparrow \mid \hat{\Downarrow}\rangle|^{2} \times P_{1}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

