Ex464: Angular momentum of a wave function

Submitted by: Yaki Ben-Yakar, corrections by DC

The problem:

The wave function of a particle is $\psi(x, y, z)=f(r) z(z+1)$.
(1) Write the wave function in the $|r \theta \phi\rangle$ basis.
(2) Write the wave function in the $|r l m\rangle$ basis.
given that:
$Y^{00}=\sqrt{\frac{1}{4 \pi}}, Y^{10}=\sqrt{\frac{3}{4 \pi}} \cos (\theta), Y^{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2}(\theta)-1\right)$
(3) write a condition on M_{6} and M_{4} so that the wave function will be normalized, Given $M_{n}=\int_{0}^{\infty} r^{n}(f(r))^{2} d r$ and $M_{6}=\frac{5}{8 \pi}$. find what is M_{4}.
(4) Find the probability of the particle to be in a spherical state $(l=0)$.
(5) What are the possible values in the measurement of L_{x} ?
(6) What are the possible values in the measurement of L_{z} ?
(7) Find the probability of the particle to be in a polar state $(\mathrm{l}=1)$ with $L_{x}=1$.

The solution:

(1) By changing variables from cartesian cordinates to spherical cordinates one gets:

$$
\Psi(r, \theta, \phi)=f(r) r^{2} \cos ^{2}(\theta)+f(r) r \cos (\theta)
$$

(2) Using the $Y^{l m}$ for the basis of Hilbert space one get:

$$
\Psi(r, \theta, \phi)=f(r) r^{2}\left(\sqrt{\frac{16 \pi}{45}} Y^{20}+\sqrt{\frac{4 \pi}{9}} Y^{00}\right)+f(r) r \sqrt{\frac{4 \pi}{3}} Y^{10}
$$

Note by DC: Let us write it schemtically as

$$
\Psi(r, \theta, \phi)=f_{0}(r) Y^{00}+f_{1}(r) Y^{10}+f_{2}(r) Y^{20}
$$

(3) Normalizing the given wave function one get the wanted condition:

$$
1=\langle\Psi \mid \Psi\rangle=\int_{\text {allspace }} \Psi^{*}(r, \theta, \phi) \Psi(r, \theta, \phi) r^{2} d r d \Omega=\frac{4 \pi}{5} \int_{0}^{\infty} r^{6}(f(r))^{2} d r+\frac{4 \pi}{3} \int_{0}^{\infty} r^{4}(f(r))^{2} d r=\frac{4 \pi}{5} M_{6}+\frac{4 \pi}{3} M_{4}
$$

If substitute M_{6} in the above equation it is easy to find that: $M_{4}=\frac{3}{8 \pi}$.
Note by DC: Schematically the calculation here is

$$
\text { Normalization }=\sum_{\ell=0}^{3} \int\left|f_{\ell}(r)\right|^{2} r^{2} d r=p_{0}+p_{1}+p_{2}=\frac{4 \pi}{9} M_{6}+\frac{4 \pi}{3} M_{4}+\frac{16 \pi}{45} M_{6}=1
$$

(4) Finding the probability is as finding the projection of the given state on the wantet state to find, i.e in our case $\Phi=Y^{00}$. so we get:

$$
P=|\langle\Phi \mid \Psi\rangle|^{2}=\int_{\text {allspace }}\left|\Phi^{*}(\theta, \phi) \Psi(r, \theta, \phi)\right|^{2} r^{2} d r d \Omega=\frac{4 \pi}{9} M_{6}=\frac{5}{18}
$$

Note by DC : The above way of writing is meaningless. what we have here is simply a sum over probabilities:

$$
P=\sum_{r}|\langle r, \ell=0 \mid \Psi\rangle|^{2}=p_{0}
$$

(5) Using the same idea as in the last section we want to find the projection of our wave function on L_{x}. The given wave function consist three angular parts Y^{00}, Y^{10} and Y^{20}. It is obvious that the Y^{00} can contribute only the value of $L_{x}=0$ becouse l is equal to zero. Moving to the next term Y^{10}, we can express this term in the linear basis, so $Y^{10}=\frac{1}{\sqrt{2}}\left(-Y_{x}^{11}+Y_{x}^{1-1}\right)$, from here we see that the possible values of L_{x} is -1 and 1 . The last term is quite difficult to handle becouse it take a lot of algebra to express Y^{20} in another basis just as we did before,but we know that it cannot exceed the value of $l=2$ and we allready got the values $-1,0,1$ so all we have to check is if it is possible to get also the values 2 and -2 . We can proof that by negation (i.e "stira") assuming that the valuse 2 and -2 are not possible. We do know that on the one hand $\left\langle L^{2}\right\rangle=2(2+1)=4$ while on the other hand $\left\langle L^{2}\right\rangle=\left\langle L_{x}^{2}\right\rangle+\left\langle L_{y}^{2}\right\rangle+\left\langle L_{z}^{2}\right\rangle$. Becouse of symmetry $\left\langle L_{x}^{2}\right\rangle=\left\langle L_{y}^{2}\right\rangle$ so we get $\left\langle L^{2}\right\rangle=2\left\langle L_{x}^{2}\right\rangle$ which equel 4, in our problem $\left\langle L_{z}^{2}\right\rangle=0$, and from our assuming $\left\langle L_{x}^{2}\right\rangle$ can get the values 0 or 1 ,therefore $\left\langle L^{2}\right\rangle \leq 2$ in contra to $\left\langle L^{2}\right\rangle=4$ and we get a negation.

So the possible values in the system is $L_{x}=-2,-1,0,1,2$.
Note by DC : The argumentation why for Y^{20} there is non-zero probability to measure $L_{x}= \pm 2$ is with typos. The correct phrasing is: For this state we have $\left\langle L^{2}\right\rangle=(2+1) 2=6$. On the other hand from XY symmetry consideration $\left\langle L^{2}\right\rangle=\left\langle L_{x}^{2}\right\rangle+\left\langle L_{y}^{2}\right\rangle+\left\langle L_{z}^{2}\right\rangle=2\left\langle L_{x}^{2}\right\rangle$. The latter implies $\left\langle L_{x}^{2}\right\rangle=3$, which cannot be true unless $L_{x}= \pm 2$ has non-zero probability.
(6) It is obviouse that the given wave function is an eigenvector of the operator L_{z} so we can see that the only Possible value that L_{z} can get is:

$$
L_{z}=0
$$

(7) The probability of finding the particle in $l=1$ and $L_{x}=1$ is:

$$
\begin{aligned}
& P\left(l=1, L_{x}=1\right)=\left|\left\langle l=1, L_{x}=1 \mid \Psi\right\rangle\right|^{2}=\left|\left\langle l=1, L_{x}=1 \mid l=1, m=0\right\rangle\langle l=1, m=0 \mid \Psi\rangle\right|^{2}= \\
& =|\langle\Uparrow \mid \Leftrightarrow\rangle|^{2} \times \int\left|\left(Y^{10}\right)^{*} \Psi\right|^{2} d^{3} r=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
\end{aligned}
$$

Note by $D C$: The calculation here is

$$
P=|\langle\Rightarrow \mid \hat{\mathbb{V}}\rangle|^{2} \times p_{1}
$$

and it is useful to observe that $|\langle\Rightarrow \mid \Uparrow\rangle|^{2}=|\langle\Uparrow \mid \Leftrightarrow\rangle|^{2}=1 / 2$, where the latter equality is implied by the standard representation of linear polarization along X .

