Ex4622: Precession caused by a series of pulses

Submitted by: Guy Zisling and Noam Wunch

The problem:

A series of magnetic pulses are applied to a spin $\frac{1}{2}$ particle. The Hamiltonian is given by $\mathbf{h}(\mathbf{t}) \cdot \mathbf{S}$. The duration of each pulse is τ and the amplitude is h. The field is in the \hat{z} direction during the first pulse and in the \hat{y} direction during the second pulse, and so on and so forth. As a result of these pulses we get a precession with frequency Ω about an axis \mathbf{n}.
(1) Write an expression for the precession frequency Ω.
(2) Find the rotation axis \mathbf{n} (unit vector).
(3) Find $\Omega \rightarrow \Omega_{0}$ in the limit where the driving force is a series of pulses with $\tau \rightarrow 0$.
(4) Find $\mathbf{n} \rightarrow \mathbf{n}_{\mathbf{0}}$ in the limit where the driving force is a series of pulses with $\tau \rightarrow 0$.
(5) Write an expression for $\tan \theta$ of the angle between \mathbf{n} and $\mathbf{n}_{\mathbf{0}}$.

Remarks:
The precession frequency is defined as $\Omega=\frac{\phi}{2 \tau}$. Where ϕ is the equivalent rotation during two consecutive pulses. The answers to questions 3,4 are trivial and can be guessed. The expressions in question 2,5 after simplification include only a "tan" function.

The solution:

(1) The evolution operator from this Hamiltonian is a product of alternating rotations around the \hat{y} and \hat{z} axis. We can group each pair of consecutive rotations and examine their combined rotation.

$$
\begin{aligned}
U(2 \tau) & =\mathrm{e}^{-i h \tau S_{z}} \mathrm{e}^{-i h \tau S_{y}}=\left[\cos \left(\frac{h \tau}{2}\right) \cdot \hat{1}-i \sin \left(\frac{h \tau}{2}\right) \cdot \sigma_{z}\right] \cdot\left[\cos \left(\frac{h \tau}{2}\right) \cdot \hat{1}-i \sin \left(\frac{h \tau}{2}\right) \cdot \sigma_{y}\right] \\
& =\cos ^{2}\left(\frac{h \tau}{2}\right) \cdot \hat{1}-i\left[\sin ^{2}\left(\frac{h \tau}{2}\right) \cdot \sigma_{x}+\cos \left(\frac{h \tau}{2}\right) \sin \left(\frac{h \tau}{2}\right) \cdot\left(\sigma_{y}+\sigma_{z}\right)\right] \\
& =\cos \left(\frac{\phi}{2}\right) \cdot \hat{1}-i \sin \left(\frac{\phi}{2}\right) \cdot \sigma_{\mathbf{n}}
\end{aligned}
$$

We used the fact that any rotation can be expressed as a rotation with angle ϕ around some axis n. Examining the coefficient for the unit matrix on both sides of the equation above yields:

$$
\phi=2 \arccos \left(\cos ^{2}\left(\frac{h \tau}{2}\right)\right) \rightarrow \Omega=\frac{\phi}{2 \tau}=\frac{1}{\tau} \arccos \left(\cos ^{2}\left(\frac{h \tau}{2}\right)\right)
$$

(2) The rotation axis is similarly found from identifying $\hat{\mathbf{n}}$ in the left hand side of the equation above:

$$
\hat{\mathbf{n}}=\frac{1}{\sqrt{\tan ^{2}\left(\frac{h \tau}{2}\right)+2}}\left(\tan \left(\frac{h \tau}{2}\right), 1,1\right)
$$

(3) Small rotations commute and so in the limit $\tau \rightarrow 0$ the combined rotation simplifies to:

$$
U(2 \tau)=\mathrm{e}^{-i\left(h \tau S_{z}+h \tau S_{y}\right)}=\mathrm{e}^{-i \sqrt{2} h \tau \frac{(0,1,1)}{\sqrt{2}} \cdot \mathbf{S}}=\mathrm{e}^{-i \phi_{0} \mathbf{n}_{0} \cdot \mathbf{S}}
$$

And so it follows that $\phi_{0}=\sqrt{2} h \rightarrow \Omega_{0}=\frac{1}{\sqrt{2}} h$.
(4) The rotation axis is also found from the expression above:

$$
\hat{\mathbf{n}}_{\mathbf{0}}=\frac{1}{\sqrt{2}}(0,1,1)
$$

(5) The tangent of the angle between two unit vectors is given by the ratio between their cross product and dot product.

$$
\tan (\theta)=\frac{\mathbf{n}_{\mathbf{0}} \times \mathbf{n}}{\mathbf{n}_{\mathbf{0}} \cdot \mathbf{n}}=\frac{1}{\sqrt{2}} \tan \left(\frac{h \tau}{2}\right)
$$

