E453: Operating Rotation Matrix on Spins

Submitted by: Reut Balaly

The problem:

1) Write the standard representation of spin 1 with linear polarization in the \hat{z} direction.
2) Calculate the standard representation of spin 1 with circular polarization in the \hat{x} direction. One measeures whether the spin is linear polarized in the \hat{y} direction.
3) What is the probability of getting a positive result for the 1 st preparation?
4) What is the probability of getting a positive result for the 2 nd preparation?

The solution:

(1) The representation of spin one with linear polarization in the \hat{z} direction is:

$$
\left|\bar{e}_{z}\right\rangle=|\Uparrow \mathbb{\imath}\rangle \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

(2) If we rotate the circular polarization state (of the standard basis) by 90 degrees round the y axis we get:

$$
\left|\overrightarrow{e_{x}}\right\rangle=R\left(\frac{\pi}{2} \overrightarrow{e_{y}}\right)|\Uparrow\rangle \rightarrow\left(\begin{array}{ccc}
\frac{1}{2} & \frac{-1}{\sqrt{2}} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right)
$$

(3) The probability of getting a positive result from the 1 st preparation is:

$$
\left|\left\langle\bar{e}_{y} \mid \bar{e}_{z}\right\rangle\right|^{2}=0
$$

because of the 90 degree orthogonality of the linear basis.
(4) due to the freedem of choice for the axis system we can say that $\left|\left\langle\overrightarrow{e_{y}} \mid \overrightarrow{e_{x}}\right\rangle\right|^{2}=\left|\left\langle\overrightarrow{e_{z}} \mid \overrightarrow{e_{x}}\right\rangle\right|^{2}$, and the probability of getting a positive result for the second preparation is:

$$
\left|\left\langle\bar{e}_{z} \mid \overrightarrow{e_{x}}\right\rangle\right|^{2}=\left|(010) \cdot\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right)\right|^{2}=\frac{1}{2}
$$

We can confirm the results by direct calculations.

