E452: Operating with rotation matrices on spin states (2003A3)

Submitted by: Yuri Khodorkovsky

The problem:

Consider a spin $\frac{1}{2}$ state: $|\psi\rangle=\left(\mathrm{e}^{-i \frac{\pi}{4}} \cos \frac{\pi}{8}\right)|\uparrow\rangle+\left(\sin \frac{\pi}{8}\right)|\downarrow\rangle$.
(1) What is the spacial orientation of the state represented by $|\psi\rangle$?
(2) Write the rotation matrices needed to rotate a spin up $|\uparrow\rangle$ state to the $|\psi\rangle$ state.

Now consider a spin 1 up state (circular z polarization)
(3) Which state do we get after rotating it as in (2)?
(4) What is the probability to measure a linear z polarization after the rotation done in (3)?

The solution:

(1) The general spin $\frac{1}{2}$ polarization state, in the direction θ, φ is given by:

$$
\binom{\mathrm{e}^{-i \varphi / 2} \cos \left(\frac{\theta}{2}\right)}{\mathrm{e}^{i \varphi / 2} \sin \left(\frac{\theta}{2}\right)}
$$

After multiplying it by the (immaterial) phase $\mathrm{e}^{-i \frac{\varphi}{2}}$, we get:

$$
\binom{\mathrm{e}^{-i \varphi} \cos \left(\frac{\theta}{2}\right)}{\sin \left(\frac{\theta}{2}\right)}
$$

Now it is evident, that in our state $|\psi\rangle: \theta=\varphi=\frac{\pi}{4}$
(2) The rotation written explicitly is:

$$
|\psi\rangle=\mathrm{e}^{-i \varphi / 2} R_{z}(\varphi) R_{y}(\theta)|\uparrow\rangle=\mathrm{e}^{-i \pi / 8} \mathrm{e}^{-i \varphi S_{z}} \mathrm{e}^{-i \theta S_{y}}|\uparrow\rangle
$$

The two rotation operators are represented by:

$$
\begin{aligned}
& \mathrm{e}^{-i \frac{\pi}{4} \cdot \frac{1}{2} \sigma_{y}}=\cos \frac{\pi}{8}-i \sigma_{y} \sin \frac{\pi}{8}=\left(\begin{array}{cc}
\cos \pi / 8 & -\sin \pi / 8 \\
\sin \pi / 8 & \cos \pi / 8
\end{array}\right) \\
& \mathrm{e}^{-i \frac{\pi}{4} \cdot \frac{1}{2} \sigma_{z}}=\cos \frac{\pi}{8}-i \sigma_{z} \sin \frac{\pi}{8}=\left(\begin{array}{cc}
\mathrm{e}^{-i \pi / 8} & 0 \\
0 & \mathrm{e}^{i \pi / 8}
\end{array}\right)
\end{aligned}
$$

(3) Given the state: $|\Uparrow\rangle \longmapsto\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, we will rotate it to get some other state $|\varphi\rangle$:

$$
|\varphi\rangle=\mathrm{e}^{-i \frac{\pi}{4} S_{z}} \mathrm{e}^{-i \frac{\pi}{4} S_{y}}|\Uparrow\rangle
$$

Using $\mathrm{e}^{-i \vec{\Phi} \cdot \vec{S}}=1-i \sin (\Phi) S_{n}-(1-\cos \Phi) S_{n}^{2}$ we obtain:

$$
|\varphi\rangle=\left(\begin{array}{ccc}
\mathrm{e}^{-i \pi / 4} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mathrm{e}^{i \pi / 4}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2}\left(1+\cos \frac{\pi}{4}\right) & -\frac{1}{\sqrt{2}} \sin \frac{\pi}{4} & \frac{1}{2}\left(1-\cos \frac{\pi}{4}\right) \\
\frac{1}{\sqrt{2}} \sin \frac{\pi}{4} & \cos \frac{\pi}{4} & -\frac{1}{\sqrt{2}} \sin \frac{\pi}{4} \\
\frac{1}{2}\left(1-\cos \frac{\pi}{4}\right) & \frac{1}{\sqrt{2}} \sin \frac{\pi}{4} & \frac{1}{2}\left(1+\cos \frac{\pi}{4}\right)
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Obviously, we need to use only the first column of the R_{y} matrix. After a little algebra we get:

$$
|\varphi\rangle=\left(\begin{array}{c}
\frac{\sqrt{2}+1}{4}(1-i) \\
\frac{1}{2} \\
\frac{\sqrt{2}-1}{4}(1+i)
\end{array}\right)
$$

(4) First, we check and see that this ket is normalized. Then, we can find the probability:

$$
|\langle\hat{\mathbb{N}} \mid \varphi\rangle|^{2}=\frac{1}{4}
$$

