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The problem:
Consider a spin 3 state: [¢)) = (e_’% cos %) | 1)+ (sing) | 1) -

(1) What is the spacial orientation of the state represented by |t) ?
(2) Write the rotation matrices needed to rotate a spin up | 1) state to the |¢) state.

Now consider a spin 1 up state (circular z polarization)

(3) Which state do we get after rotating it as in (2)?
(4) What is the probability to measure a linear z polarization after the rotation done in (3)?

The solution:

(1) The general spin % polarization state, in the direction , ¢ is given by:

e"1/2 cos (g)
ei?/2 gin (g)

After multiplying it by the (immaterial) phase e~
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Now it is evident, that in our state [¢): 0 = ¢ = J

e
'z, we get:

(2) The rotation written explicitly is:
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The two rotation operators are represented by:
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(3) Given the state: | ff) — | 0 | , we will rotate it to get some other state |p) :
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Using . isin(®)S, — (1 — cos ®)S2 we obtain:



o—im/A g % (1 + cos %) —% sin T % (1 — cos %) 1

]
lp) = 0 1 -0 %sin% cos% —% sin% 0
0 0 eim/4 % (1 — cos %) %sin% % (1+Cos g) 0

Obviously, we need to use only the first column of the R, matrix. After a little algebra we get:
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(4) First, we check and see that this ket is normalized. Then, we can find the probability:
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