E4510: Operating rotation matrices on spin states (2002A2)

Submitted by: Oded Betzalel

The problem:

Find the state vector Ψ_{m} in the standard base for a spin polarized in the XY plane at angle $\varphi=60^{\circ}$. Relate to the following cases:
(1) Spin $1 / 2$.
(2) Spin 1 with circular polarization.
(3) Spin 1 with linear polarization.

You must express the elements of the state vector in your final answer with $e^{i \pi / \text { integer }}, \sqrt{2}$ etc.
In order to prevent losing all points because of an algebraic mistake, please write first the analytic formula and only after calculate it to receive your final answer.

The solution:

(1) Any spin $1 / 2$ polarization can be obtained by combining a rotation round the Y axis and a rotation round the Z axis on the "up" state:

$$
\left|\vec{e}_{\theta, \varphi}>=R_{z}(\varphi) R_{y}(\theta)\right| \uparrow>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \uparrow>\rightarrow\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}\right.
$$

In order to get the question's polarization one needs to rotate by $\theta=\pi / 2$ round the Y axis and then rotate by $\varphi=\pi / 3$ round the Z axis. By doing so, one gets:

$$
\Psi_{m}=\frac{1}{\sqrt{2}}\binom{e^{-i(\pi / 6)}}{e^{i(\pi / 6)}}
$$

(2) Any right circular state can be obtained by combining a rotation round the Y axis and a rotation round the Z axis on the $\mid \Uparrow>$ state :

$$
\left|\vec{e}_{\theta, \varphi}>=U\left(\varphi \vec{e}_{z}\right) U\left(\theta \vec{e}_{y}\right)\right| \Uparrow>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \Uparrow>\rightarrow\left(\begin{array}{c}
\frac{1}{2}(1+\cos \theta) e^{-i \varphi} \\
\frac{1}{\sqrt{2}} \sin \theta \\
\frac{1}{2}(1-\cos \theta) e^{i \varphi}
\end{array}\right)\right.
$$

The rotation action that needs to be done is a rotation by $\theta=\pi / 2$ round the Y axis and then a rotation by $\varphi=\pi / 3$ round the Z axis. Therefore:

$$
\Psi_{m}=\frac{1}{2}\left(\begin{array}{c}
e^{-i \pi / 3} \\
\sqrt{2} \\
e^{i \pi / 3}
\end{array}\right)
$$

Any left circular state can be obtained by combining a rotation round the Y axis and a rotation round the Z axis on the $\mid \Downarrow>$ state :

$$
\left|\vec{e}_{\theta, \varphi}>=U\left(\varphi \vec{e}_{z}\right) U\left(\theta \vec{e}_{y}\right)\right| \Downarrow>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \Downarrow>\rightarrow\left(\begin{array}{c}
\frac{1}{2}(1-\cos \theta) e^{-i \varphi} \\
-\frac{1}{\sqrt{2}} \sin \theta \\
\frac{1}{2}(1+\cos \theta) e^{i \varphi}
\end{array}\right)\right.
$$

The rotation action that needs to be done is a rotation by $\theta=\pi / 2$ round the Y axis and after that a rotation by $\varphi=\pi / 3$ round the Z axis. Therefore:

$$
\Psi_{m}=\frac{1}{2}\left(\begin{array}{c}
e^{-i \pi / 3} \\
-\sqrt{2} \\
e^{i \pi / 3}
\end{array}\right)
$$

(3)Using the same technique as in (2) this time with a rotation matrix that rotates the state | $\mathbb{\downarrow}\rangle$ in order to get other linearly polarized states:

$$
\left.\left|\vec{e}_{\theta, \varphi}>=U\left(\varphi \vec{e}_{z}\right) U\left(\theta \vec{e}_{y}\right)\right| \llbracket\right\rangle=e^{-i \varphi S_{z}} e^{-i \theta S_{y}}|\\
rangle>\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \sin \theta e^{-i \varphi} \\
\cos \theta \\
\frac{1}{\sqrt{2}} \sin \theta e^{i \varphi}
\end{array}\right)
$$

by using the same rotation as before $\theta=\pi / 2$ and $\varphi=\pi / 3$:

$$
\Psi_{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-e^{-i \pi / 3} \\
0 \\
e^{i \pi / 3}
\end{array}\right)
$$

