E451: Operating rotation matrices on spin states (2002A2)

Submitted by: Adam Reichenthal

The problem:

Find the state vector Ψ_{m} in the standard base for a spin polarized in the XY plane at angle $\varphi=60^{\circ}$. Relate to the following cases:
(1) Spin $1 / 2$.
(2) Spin 1 with circular polarization.
(3) Spin 1 with linear polarization.

You must express the elements of the state vector in your final answer with $e^{i \pi / \text { integer }}, \sqrt{2}$ etc. In order to prevent losing all points because of an algebraic mistake, please write first the analytic formula and only after calculate it to receive your final answer.

The solution:

(1) We can receive any spin $1 / 2$ polarization state by combining a rotation round the Y axis and a rotation round the Z axis. The result is:

$$
\left|\vec{e}_{\theta, \varphi}>=R(\varphi) R(\theta)\right| \uparrow>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \uparrow>\rightarrow\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}\right.
$$

The rotation action that has been done on the spin $1 / 2$ up is a rotation by $\theta=\pi / 2$ round the Y axis and after that a rotation by $\varphi=\pi / 3$ round the Z axis. Therefore:

$$
\left|\Psi_{m}>=e^{-i(\pi / 6)} \cos (\pi / 4)\right| \uparrow>+e^{i(\pi / 6)} \sin (\pi / 4) \mid \downarrow>
$$

Analytic result:

$$
\Psi_{m}=\binom{e^{-i \frac{\pi}{6}} \cos \left(\frac{\pi}{4}\right)}{e^{i \frac{\pi}{6}} \sin \left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\binom{e^{-i \frac{\pi}{6}}}{e^{i \frac{\pi}{6}}}
$$

(2) We will use a similar technique as at (1) once again but this time using dim $=3$ rotation matrices to be able to take care of spin 1 and using the linear basis.
We can rotate the state $\mid \Uparrow>$ in order to get other circularly polarized states:

$$
\left|\vec{e}_{\theta, \varphi}>=U\left(\varphi \vec{e}_{z}\right) U\left(\theta \vec{e}_{y}\right)\right| \Uparrow>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \Uparrow>\rightarrow\left(\begin{array}{c}
\frac{1}{2}(1+\cos \theta) e^{-i \varphi} \\
\frac{1}{\sqrt{2}} \sin \theta \\
\left.\frac{1}{2}(1-\cos \theta) e^{i \varphi}\right)
\end{array}\right)\right.
$$

The rotation action that has been done on the spin 1 up is a rotation by $\theta=\pi / 2$ round the Y axis and after that a rotation by $\varphi=\pi / 3$ round the Z axis. Therefore:

$$
\left|\Psi_{m}>=\frac{1}{2}(1+\cos (\pi / 2)) e^{-i \pi / 3}\right| \Uparrow>+\frac{1}{\sqrt{2}} \sin (\pi / 2)\left|\Uparrow>+\frac{1}{2}(1-\cos (\pi / 2)) e^{i \pi / 3}\right| \Downarrow>
$$

Analytic result:

$$
\Psi_{m}=\frac{1}{2}\left(\begin{array}{c}
e^{-i \frac{\pi}{3}} \\
\sqrt{2} \\
e^{i \frac{\pi}{3}}
\end{array}\right)
$$

(3) Using the same technique as in (2) this time with a rotation matrix that rotates the state $\mid \hat{\mathbb{V}}>$ in order to get other linearly polarized states:

$$
\left|\vec{e}_{\theta, \varphi}>=U\left(\varphi \vec{e}_{z}\right) U\left(\theta \vec{e}_{y}\right)\right| \mathbb{\Downarrow}>=e^{-i \varphi S_{z}} e^{-i \theta S_{y}} \left\lvert\, \Uparrow>\rightarrow\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \sin \theta e^{-i \varphi} \\
\cos \theta \\
\frac{1}{\sqrt{2}} \sin \theta e^{i \varphi}
\end{array}\right)\right.
$$

We receive:

$$
\left|\Psi_{m}>=-\frac{1}{\sqrt{2}} \sin (\pi / 2) e^{-i \pi / 3}\right| \Uparrow>+\cos (\pi / 2)\left|\Uparrow>+\frac{1}{\sqrt{2}} \sin (\pi / 2) e^{i \pi / 3}\right| \Downarrow>
$$

Analytic result:

$$
\Psi_{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-e^{-i \frac{\pi}{3}} \\
0 \\
e^{i \frac{\pi}{3}}
\end{array}\right)
$$

