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The problem:

Find the state vector Ψm in the standard representation basis for spin polarized in the x− y plain,
at angle ϕ = 60o. In your answer consider the following cases:

(1) Spin half.
(2) Spin one with circular polarization.
(3) Spin one with linear polarization.

In the final answer, state elements should be formulated using e
iπ

integer ,
√

2 and analogous.

The solution:

(1) Without loss of generality, we can generate any spin polarization state from the ”up” state

| ↑〉 −→
(

1
0

)
by combining rotation around the y axis followed by a rotation around the z axis.

Therefore, we can write:

|Ψm〉 −→ Rz(ϕ)Ry(θ)
(

1
0

)
= e−iϕSze−iθSy

(
1
0

)
(1)

Where Sy and Sz are the generators of rotations around the axis y and z respectively.
The general formula for constructing a 2x2 rotation matrix is:

Rn(Φ) = cos(Φ/2)1̂− i sin(Φ/2)σn (2)

Where σn ≡ ~n ·~σ by definition and 1̂ is the identity matrix. Let us derive an expression for equation
(1) above:

Ry(θ) = cos(θ/2)
(

1 0
0 1

)
− i sin(θ/2)

(
0 −i
i 0

)
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
(3)

Rz(ϕ) = cos(ϕ/2)
(

1 0
0 1

)
− i sin(ϕ/2)

(
1 0
0 −1

)
=

(
e−iϕ/2 0

0 eiϕ/2

)
(4)

| Ψm〉 = Rz(ϕ)Ry(θ) |↑〉 →
(

e−iϕ/2 cos(θ/2) −e−iϕ/2 sin(θ/2)
eiϕ/2 sin(θ/2) eiϕ/2 cos(θ/2)

) (
1
0

)
=

(
e−iϕ/2 cos(θ/2)
eiϕ/2 sin(θ/2)

)
(5)

By submitting θ = π
2 and ϕ = π

3 we rotate the ”up” state into the x− y plain and then rotate again
to obtain the desired angle. The final result is therefore:
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Ψm =
(

e−i π
6 cos(π

4 )
ei π

6 sin(π
4 )

)
=

1√
2

(
e−i π

6

ei π
6

)
(6)

(2) The procedure taken in the previous section is the same for the case of spin one, only this time
the general formula for constructing a 3x3 rotation matrix is:

Un(Φ) = e−iΦSn = 1̂− i sin(Φ) · Sn − (1̂− cos(Φ)) · (Sn)2 (7)

Where Sn ≡ ~n · ~S by definition and 1̂ is the identity matrix.

Uy(θ) = e−iθSy =


1
2(1 + cos(θ)) − 1√

2
sin(θ) 1

2(1− cos(θ))
1√
2
sin(θ) cos(θ) − 1√

2
sin(θ)

1
2(1− cos(θ)) 1√

2
sin(θ) 1

2(1 + cos(θ))

 (8)

Uz(ϕ) = e−iϕSz =

e−iϕ 0 0
0 1 0
0 0 eiϕ

 (9)

Multiplying both matrixes would give us:

Uz(ϕ)Uy(θ) =


1
2e−iϕ(1 + cos(θ)) − 1√

2
e−iϕ sin(θ) 1

2e−iϕ(1− cos(θ))
1√
2
sin(θ) cos(θ) − 1√

2
sin(θ)

1
2eiϕ(1− cos(θ)) 1√

2
eiϕ sin(θ) 1

2eiϕ(1 + cos(θ))

 (10)

So far we received the general expression for rotating spin one, but in order to get circularly polarized
state we need to operate equation (10) on either one of the states represent circular polorization

in the z direction . Without loss of generality we’ll choose the state | ⇑〉 −→

1
0
0

. We can now

represent the requested state by:

|Ψm〉 −→ Uz(ϕ)Uy(θ)

1
0
0

 =
1
2

e−iϕ(1 + cos(θ))√
2 sin(θ)

eiϕ(1− cos(θ))

 (11)

By submitting θ = π
2 and ϕ = π

3 we get the final answer:

Ψm =
1
2

e−iπ
3√
2

eiπ
3

 (12)
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It can be easily verified that if we had taken the state | ⇓〉 −→

0
0
1

 we would have reached the

same result only now the middle term would appear with a negative sign.

(3) Similarly, we can rotate the state | m〉 −→

0
1
0

, which represent linear polariztion in the z

direction, in order to get the requested linear polarization state:

Ψm = Uz(ϕ)Uy(θ)

0
1
0

 =
1√
2

−e−iϕ sin(θ)√
2 cos(θ)

eiϕ sin(θ)

 (13)

By submitting θ = π
2 and ϕ = π

3 we get the final answer:

Ψm =
1√
2

−e−iπ
3

0
eiπ

3

 (14)

Notice that in each case above we started with normalized states (‖Ψ‖2 = 1) and we received
Ψm which is normalized as well. This suggests that the operation of rotation did not change the
magnitude of the state, as expected.
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