Ex4484: Spin $\frac{1}{2}$ in a rotating magnetic field

Submitted by: Diana Moskvitin and Semion Dekhtyaryuk

The problem:

The Hamiltonian of spin $\frac{1}{2}$ in a magnetic field is $H=h(t) \cdot S$.
Consider a magnetic field with magnitude $|h(t)|=\Omega_{0}$, which rotates in the XY-plane with angular velocity ω.
After time t the angle between X-axis and magnetic field is $\varphi=\omega \cdot t$.
The Hamiltonian of the "stationary system" (the lab) is $\tilde{H}=H-\omega \cdot S_{z}$.

1. Find the angle θ_{0} in which one should prepare the spin in order for it to follow the magnetic field with a constant angle (θ_{0} is respected to Z -axis)

From now on, the spin is prepared $(\mathrm{t}=0)$ in X -axis direction
2. Letting the system to evolve, what is the maximal deviation angle of the spin from the X -axis

From now on, we let the magnetic field to propagate for half a cycle ($\varphi=\pi$)
3. What is the final direction of the spin in the stationary system in the limit $\omega \mapsto 0$?
4. What is the final direction of the spin in the stationary system in the limit $\omega \mapsto \infty$?
5. For which ω values the deviation of the spin from X -axis would be 0 ?

Hint: this question does not require algebraic effort, only geometrical and physical understanding.

The solution:

1. In order for the spin to follow the magnetic field at a constant angle, it should be prepared in the direction of the magnetic field. By switching to a stationary system we get an effective magnetic field, so one must prepare the spin in the direction of the effective magnetic field.

Magnetic field rotates in XY-plane:

$$
\begin{align*}
\vec{\Omega} & =\Omega_{0}(\cos \varphi, \sin \varphi, 0) \tag{1}\\
\vec{S} & =\left(S_{x}, S_{y}, S_{z}\right) \tag{2}
\end{align*}
$$

Hamiltonian of the stationary system would be:

$$
\begin{align*}
\tilde{H} & =\vec{\Omega} \cdot \vec{S}-\omega \cdot S_{z}=\frac{\Omega_{0}}{2} \cos \varphi\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\frac{\Omega_{0}}{2} \sin \varphi\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]-\frac{\omega}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]= \tag{3}\\
& =\frac{1}{2}\left[\begin{array}{cc}
-\omega & \Omega_{0} e^{-i \varphi} \\
\Omega_{0} e^{i \varphi} & \omega
\end{array}\right] \tag{4}
\end{align*}
$$

Without the loss of generality one could assume that the effective magnetic field is displaced on XZ-plane, hence $\varphi=0$:

$$
\begin{align*}
\tilde{H} & =\frac{1}{2}\left[\begin{array}{cc}
-\omega & \Omega_{0} \\
\Omega_{0} & \omega
\end{array}\right]=\frac{1}{2}\left(\Omega_{0} \cdot \sigma_{x}-\omega \cdot \sigma_{z}\right)=\tilde{\Omega} \cdot \vec{S} \tag{5}\\
\tilde{\Omega} & =\left(\Omega_{0}, 0,-\omega\right) \rightarrow \tilde{\theta}_{0}=\arctan \left(\frac{\omega}{\Omega_{0}}\right) \tag{6}
\end{align*}
$$

So the angle θ_{0} would be:

$$
\begin{equation*}
\theta_{0}=\frac{\pi}{2}+\tilde{\theta}_{0}=\frac{\pi}{2}+\arctan \left(\frac{\omega}{\Omega_{0}}\right) \tag{7}
\end{equation*}
$$

Figure 1: stationary system
2. Consider the effective magnetic field on XZ-plane with $\tilde{\theta}_{0}$ angle between the field and X-axis, by preparing the spin on X -axis, the spin would do a precession motion around the effective magnetic field, as a result the spin will be at the maximum angle deviation $\Delta \theta_{M a x}=2 \tilde{\theta}_{0}$

Figure 2: Spin precession in the stationary system
3. For the $\omega \mapsto 0$ limit, the change is adiabatic, hence the system will conserve its energy level, as a result the spin would follow the magnetic field, (continuing its percession motion) facing $\varphi=\pi$ respectfully to XY-plane.
4. For the $\omega \mapsto \infty$ limit, the change is sudden, so the state of the system before the change is conserved, hence the spin would stay in its initial state in $\varphi=0$ respectfully to XY-plane.
5. Magnetic field rotates to $-\hat{x}$, finishing half of its period. Full period would be:

$$
\begin{equation*}
\omega \cdot T_{m}=2 \pi \rightarrow T_{m}=\frac{2 \pi}{\omega} \tag{8}
\end{equation*}
$$

For each half a period of the magnetic field the spin must finish a full period, by using this constrain on the spin's precession, and the fact that the spin precession frequency is Ω we get:

$$
\begin{align*}
T_{\text {Spin }} & =\frac{\pi}{\omega} \tag{9}\\
\Omega & =\sqrt{\Omega_{0}^{2}+\omega^{2}} \tag{10}\\
\Omega \cdot T_{\text {Spin }} & =2 \pi \cdot n \tag{11}\\
\omega_{n} & =\frac{\Omega_{0}}{\sqrt{4 n^{2}-1}}, \quad n=1,2,3, \ldots \tag{12}
\end{align*}
$$

