E444: Identification of Rotation

Submitted by: Uri Argaman and Yair Margalit

The problem:

Assume a particle with spin $1 / 2$. The following rotation matrices are defined (in the standard basis):

$$
\begin{aligned}
& \mathcal{R}_{\mathcal{A}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \mathcal{R}_{\mathcal{B}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& \mathcal{R}_{\mathcal{C}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

(1) Find the angle of rotation Φ and the axis of rotation \vec{n} for all of the matrices.
(2) Write a rotation matrix 4×4 that operates R_{C} on 2 spins.

The solution:

(1) A general rotation of spin $\frac{1}{2}$ is given by:

$$
\begin{aligned}
& R(\Phi)=\cos \left(\frac{\Phi}{2}\right) I-i \sin \left(\frac{\Phi}{2}\right) \sigma_{n} \\
& \sigma_{n}=\vec{n} \cdot \vec{\sigma}
\end{aligned}
$$

(A)For R_{A} : We can see that $R_{A}=\sigma_{x}$. So using gauge freedom, we will demand:

$$
R(\Phi)=\left[\cos \left(\frac{\Phi}{2}\right) I-i \sin \left(\frac{\Phi}{2}\right) \sigma_{n}\right] e^{i \alpha}=\sigma_{x}
$$

If we use $\Phi=\pi$ and $\vec{n}=(1,0,0)$ we get:

$$
R(\pi)=-i e^{i \alpha} \sigma_{x}
$$

So for $\alpha=\frac{\pi}{2}$ we get the desired result.
(B)Similarly for R_{B}; We can see that:

$$
R_{B}=\frac{1}{\sqrt{2}}\left(I-i \sigma_{y}\right)
$$

We will choose $\Phi=\frac{\pi}{2}$ and $\vec{n}=(0,1,0)$:

$$
R\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\left[I-i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right]=R_{B}
$$

(C)For R_{C}, we see that:

$$
R_{C}=\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)
$$

So we will choose $\Phi=\pi$ and $\vec{n}=\frac{1}{\sqrt{2}}(1,0,1)$. Using gauge freedom we will demand:

$$
R(\pi)=-i e^{i \alpha} \frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)=-\frac{i}{\sqrt{2}} e^{i \alpha}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

And if we take $\alpha=\frac{\pi}{2}$ we get the desired result.
(2) The 2 dimensional standard basis is: $\left\lvert\, \uparrow>=\binom{1}{0}\right.$ and $\left\lvert\, \downarrow>=\binom{0}{1}\right.$. So we will take:

$$
\begin{array}{ll}
\left|\uparrow \uparrow>=|\uparrow>\otimes| \uparrow>=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\right. & \left|\uparrow \downarrow>=|\uparrow>\otimes| \downarrow>=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right. \\
\left|\downarrow \uparrow>=|\downarrow>\otimes| \uparrow>=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad\right| \downarrow \downarrow>=|\downarrow>\otimes| \downarrow>=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

And the matrix that rotates the two spins together:

$$
\begin{aligned}
& R_{C}^{(4)}=I \otimes R_{C}^{(2)}+R_{C}^{(2)} \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)= \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & -2
\end{array}\right)
\end{aligned}
$$

We can easily see that the first matrix (before summation) only rotates the second spin, and the second matrix only rotates the first spin.

