E443: Identification Hadamard rotation of spin $1 / 2$

Submitted by: Maya Zeevi

The problem:

Given a particle of spin $1 / 2$ let's define the next operation (in the standard basis):
$R=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
(1) Operating R on the up state. What will be the polarization direction?
(2) Operating R on the down sate. What will be the polarization direction?
(3) What is the rotation angle represented by R ?

It is possible to realize R at the lab by operating magnetic field for 1 sec . At this time the Hamiltonian is of the form of $H=h \cdot \sigma+c$.
(4) Decide the direction and the size of the magnetic field h.
(5) Decide the value of the constant c .

The solution:

(1) By operating R on the up state, we get:

$$
R|\uparrow\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle
$$

(2) By operating R on the down state, we get:

$$
R|\downarrow\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle-|\downarrow\rangle
$$

(3)We can see the R matrix as the rotation matrix multiplying by a phase factor: Thus we will compare them.
$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)=\frac{1}{\sqrt{2}}(1,0,1) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)=\vec{n} \cdot \vec{\sigma}$
$\vec{n} \cdot \vec{\sigma}=e^{i \alpha}\left[\cos \left(\frac{\Phi}{2}\right) \hat{1}-i \sin \left(\frac{\Phi}{2}\right) \cdot \sigma_{n}\right]$
One can see from the equation
$\cos \left(\frac{\Phi}{2}\right)=0 \quad \Rightarrow \Phi=\pi$
$e^{i \alpha} \cdot\left(-i \sin \left(\frac{\Phi}{2}\right)\right)=1 \quad \Rightarrow \alpha=\frac{\pi}{2}$
(4)+(5) After 1 sec the evolution operator is equal to R.

Thus we will compare them.
$\hat{U(t)}=e^{-i \hat{H} t}=e^{-i(h \cdot \sigma+c) t}$
$U(t=1 \mathrm{sec})=e^{-i \hat{h} \cdot \sigma} \cdot e^{-i c}=R=e^{i \alpha} \cdot e^{-\frac{i \hat{\Phi} \sigma}{2}}$
Derive from the comparison:
$c=-\alpha=-\frac{\pi}{2}$
$\hat{h}=|h| \cdot \hat{n}$
$|\hat{h}|=\frac{\pi}{2}, \hat{n}=\frac{1}{\sqrt{2}}(1,0,1)$

