Ex3640: Electrons in a 2 dimensional finite potential well with a magentic field

Submitted by: Guy Alis

The problem:

Given a 2 dimensional potential well of size $L \times L$ and of depth V_{0} :

$$
V(x, y)= \begin{cases}0 & \text { if } x<-\frac{L}{2}, y<-\frac{L}{2}, \\ -V_{0} & \text { if }-\frac{L}{2}<x<+\frac{L}{2},-\frac{L}{2}<y<+\frac{L}{2} \\ 0 & \text { if } x>+\frac{L}{2}, y>+\frac{L}{2}\end{cases}
$$

Hence, all of the electrons with energy $E>0$ are escaping the well.Assume that the electrons which remain in the well have mass m,charge e, and have no spin.
(1) Write the condition $L_{\text {min }}<L$ of which at least one electron will could be in the well

For future calculations, assume $L_{\text {min }} \ll L$
(2) Calculate the number of electrons N_{0} that can exist in the well

A homogeneous magnetic field B is created perpendicularly to the plane of the well.
In the next sections,known results regarding Landau levels can we used (without any proof)
(3) Find the maximal magnetic field $B=B_{2}$ so that two Landau levels will be filled in the well.

Denoting the number of particles from section (3) to be N_{2} :
(4) What is the ratio of $\frac{N_{2}}{N_{0}}$?.
(5) Generalize the result of section (4) for the case of n full Landau levels.

Guidance:
The boundary conditions at the edges of the well have negligible effect on the spectrum, so that previous results that are derived from Landau's solution can be used.

The solution:

(1) The eigenenergies of a 2D finite well of depth V_{0} are:

$$
\begin{aligned}
& E_{n_{x}, n_{y}}=\frac{\pi^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}\right)-V_{0} \\
& \text { where }: n_{x}, n_{y}>0
\end{aligned}
$$

In order to stay located in the well,the particle needs to have energy $E<0$. The smallest energy level that can occupy one electron is $E_{1,1}$.substituting these conditions into the expression of the eigenenergies will give:

$$
L>\frac{\pi}{\sqrt{m V_{0}}}
$$

Therefore:

$$
L_{m i n}=\frac{\pi}{\sqrt{m V_{0}}}
$$

(2) If $L \gg L_{\text {min }}$, then $E<0$.Applying this condition on $E_{n_{x}, n_{y}}$ will give:

$$
n_{x}^{2}+n_{y}^{2}<\frac{2 m L^{2} V_{0}}{\pi^{2}}
$$

This equation describes a circle with center $(0,0)$ and radius $R^{2}=\frac{2 m L^{2} V_{0}}{\pi^{2}}$.
Adding the constraint of $n_{x}, n_{y}>0, N_{0}$ will be the quarter of this circle:

$$
N_{0}=\frac{m L^{2} V_{0}}{2 \pi}
$$

(3) Making use of known results regarding Landau levels, the energy of the $n^{\text {th }}$ Landau level is:

$$
\begin{aligned}
& E_{\nu}=\left(\frac{1}{2}+\nu\right) \omega_{B}-V_{0} \\
& \text { where }: \omega_{B}=\frac{e B}{m c}, \nu=n-1, \nu=0,1,2, \ldots
\end{aligned}
$$

For 2 Landau levels, $\nu=1$ and then, plugging the constraint that $E<0$ so that the electrons will stay located in the well,the maximal magnetic field B_{2} is :

$$
B_{2}=\frac{2 m c V_{0}}{3 e}
$$

(4) The number of electrons occupying each Landau level is defined as $g_{\text {Landau }}=\frac{L^{2} e B}{2 \pi c}$.Due to the fact that the potential floor is "flat" the occupation in each Landau level is the same : $N_{n}=n \cdot g_{\text {Landau }}$. Therefore:

$$
N_{2}=(2) \cdot g_{\text {Landau }}=\frac{4}{3} \frac{m L^{2} V_{0}}{2 \pi}=\frac{4}{3} N_{0}
$$

Now it is immediate that:

$$
\frac{N_{2}}{N_{0}}=\frac{4}{3}
$$

(5) By a short generalization of the previous sections, the maximal magnetic field B_{n} so that n Landau levels will be filled in the well:

$$
B_{n}=\frac{m c V_{0}}{e\left(n-\frac{1}{2}\right)}
$$

The number of electrons $g_{B_{n} \text { Landau }}$ that can occupy each Landau level under this condition is:

$$
g_{B_{n} L a n d a u}=\frac{L^{2} e B_{n}}{2 \pi c}=\frac{1}{n-\frac{1}{2}} N_{0}
$$

Yielding the ratio:

$$
\frac{N_{n}}{N_{0}}=\frac{n}{\frac{1}{2}+\nu}=\frac{n}{n-\frac{1}{2}}
$$

