E361: Electron in the Hall effect geometry
 Submitted by: Maayan Shani

The problem:

Assume a two dimensional model with length L and cyclic boundary condition on the interval $0<x<L$. The electric potential $V(y)=\frac{1}{2} \alpha y^{2}$ is given and a homogeneous magnetic field B at the z direction is applied. It convenient to express the magnetic field using the dimensionless parameter: $b=\frac{B}{\sqrt{m \alpha}}$. We can see that b is in fact the ratio between two frequency (What are they?) Inside the model we insert N spinless electrons.
(a) Show that as long as $N<\left[4\left(1+b^{2}\right)^{3} m \alpha\right]^{1 / 4} L / \pi$ only the first landau band is populated.
(b) Show how you can get the result from (a) using very strong field or very weak field approximations.

The solution:

(a)

Let us look at the two frequencies of the system: ω_{B} - the frequency of circular motion due to Lorentz force, and $\omega_{\text {osc }}$ - the frequency of the oscillations due to the electric potential:

$$
b=\frac{\omega_{B}}{\omega_{o s c}}=\frac{(e B)}{(m c)} \sqrt{\frac{m}{\alpha}}=\frac{e}{c} \frac{B}{\sqrt{m \alpha}}
$$

The Hamiltonaian that describes the motion of a particle in the Hall bar geometry is :

$$
\hat{H}=\frac{1}{2 m}\left(p_{x}+B \hat{y}\right)^{2}+\frac{1}{2 m} p_{y}^{2}+V(y)
$$

We define the constant of motion:

$$
Y=\hat{x}-\frac{1}{\omega_{B}} \hat{v}_{y}=-\frac{1}{B} \hat{p}_{x}
$$

and the eigenvalues of \hat{Y} are:

$$
Y_{l}=\frac{1}{B} \frac{2 \pi}{L} l
$$

So, our Hamiltonian is:

$$
H=\frac{1}{2 m} p_{y}^{2}+\frac{B^{2}}{2 m}\left(y-Y_{l}\right)^{2}+V(y)
$$

We define the effective potential:

$$
\begin{aligned}
V^{(\ell)} & =\frac{1}{2} m \omega_{B}^{2}\left(y-Y_{l}\right)^{2}+V(y) \\
V^{(\ell)} & =\frac{1}{2} m \omega_{B}^{2}\left(y^{2}-2 y Y_{l}+Y_{l}^{2}\right)+\frac{1}{2} \alpha y^{2}=\frac{1}{2} m \omega_{B}^{2}\left(y^{2}-2 y Y_{l}+Y_{l}^{2}+\frac{\alpha}{m \omega_{B}^{2}} y^{2}\right)=\frac{1}{2} m \omega_{B}^{2}\left[\left(1+\frac{1}{b^{2}}\right) y^{2}-2 y Y_{l}+Y_{l}^{2}\right] .
\end{aligned}
$$

Now, lets write the equation in quadratic forms

$$
\frac{1}{2} m \omega_{B}^{2}\left[\left(\sqrt{1+\frac{1}{b^{2}}} y-\sqrt{\frac{1}{1+1 / b^{2}}} Y_{l}\right)^{2}+Y_{l}^{2}\left(1-\frac{1}{1+1 / b^{2}}\right)\right]=\frac{1}{2} m \omega_{B}^{2}\left[\left(1+\frac{1}{b^{2}}\right)\left(y-\frac{1}{1+1 / b^{2}} Y_{l}\right)^{2}+Y_{l}^{2}\left(\frac{1}{b^{2}+1}\right)\right]
$$

So, our Hamiltonian is

$$
H=\frac{1}{2 m} p_{y}^{2}+\frac{1}{2} m \omega_{B}^{2}\left[\left(1+\frac{1}{b^{2}}\right)\left(y-\frac{1}{1+1 / b^{2}} Y_{l}\right)^{2}+Y_{l}^{2}\left(\frac{1}{b^{2}+1}\right)\right]
$$

Let us define:

$$
\tilde{y}=y-Y_{l} \frac{1}{1+1 / b^{2}}
$$

and

$$
\tilde{\omega}=\omega_{B} \sqrt{1+\frac{1}{b^{2}}},
$$

to get the new Hamiltonian

$$
\tilde{H}=\frac{1}{2 m} p_{y}^{2}+\frac{1}{2} m \tilde{\omega}^{2} \tilde{y}^{2}+\frac{1}{2} m \omega_{B}^{2} \frac{1}{b^{2}+1} Y_{l}^{2} .
$$

The new eigenvalues are:

$$
\tilde{E}_{l, \nu}=\tilde{\omega}\left(\frac{1}{2}+\nu\right)+\frac{1}{2} m \omega_{B}^{2} \frac{1}{b^{2}+1} Y_{l}^{2} .
$$

The condition for filling the first Landau level is:

$$
\begin{aligned}
& E_{l, 0}<E_{0,1} \\
& \frac{1}{2} m \omega_{B}^{2} \frac{1}{b^{2}+1} Y_{l}^{2}<\tilde{\omega} \\
& m \omega_{B}^{2} \frac{1}{b^{2}+1}\left(\frac{2 \pi}{B L}\right)^{2} l^{2}<\tilde{\omega}=2 \omega_{B} \sqrt{1+\frac{1}{b^{2}}} \\
& l^{2}<2 \frac{1}{m \omega_{B}}\left(\frac{B L}{2 \pi}\right)^{2}\left(b^{2}+1\right) \sqrt{1+\frac{1}{b^{2}}}=2 \frac{1}{m \omega_{B}}\left(\frac{B L}{2 \pi}\right)^{2} \frac{\left(b^{2}+1\right)^{3 / 2}}{b} \\
& l^{2}<2 \frac{m}{m B}\left(\frac{B L}{2 \pi}\right)^{2}\left(b^{2}+1\right)^{3 / 2} \frac{(m \alpha)^{1 / 2}}{B}=2\left(\frac{L}{2 \pi}\right)^{2}\left(b^{2}+1\right)^{3 / 2}(m \alpha)^{1 / 2} \\
& |l|<\left[4\left(b^{2}+1\right)^{3} m \alpha\right]^{1 / 4} \frac{L}{2 \pi} \\
& N=2|l| \\
& N<\left[4\left(b^{2}+1\right)^{3} m \alpha\right]^{1 / 4} \frac{L}{\pi}
\end{aligned}
$$

(b)

$$
B \ll 1:
$$

The Hamiltonaian is :

$$
\hat{H}=\frac{1}{2 m} p_{x}^{2}+\frac{1}{2 m} p_{y}^{2}+V(y)
$$

The eigenvalues are:

$$
E_{l, \nu}=\left(\frac{1}{2}+\nu\right) \omega_{o s c}+\frac{1}{2 m}\left(\frac{2 \pi l}{L}\right)^{2}
$$

The condition for filling the first Landau level is:

$$
\begin{aligned}
& \frac{1}{2 m}\left(\frac{2 \pi l}{L}\right)^{2}<\omega_{o s c} \\
& l^{2}<2 \sqrt{\frac{\alpha}{m}}\left(\frac{L}{2 \pi}\right)^{2} m \\
& |l|<\left(\frac{1}{4} \alpha m\right)^{1 / 4} \frac{L}{\pi} \\
& N<(4 \alpha m)^{1 / 4} \frac{L}{\pi} \\
& B \gg 1:
\end{aligned}
$$

For strong magnetic field with constant electric field we use the harmonic approximation then the energes are:

$$
E_{l, \nu} \approx\left(\frac{1}{2}+\nu\right) \omega_{B}+V\left(Y_{l}\right)=\left(\frac{1}{2}+\nu\right) \omega_{B}+\frac{1}{2} m \omega_{o s c}^{2} Y_{l}^{2}
$$

The condition for filling the first Landau level is:

$$
\begin{aligned}
& \frac{1}{2} m \omega_{o s c}^{2} Y_{l}^{2}<\omega_{B} \\
& \frac{1}{2} \alpha\left(\frac{2 \pi l}{B L}\right)^{2}<\frac{B}{m} \\
& |l|<\frac{B L}{2 \pi}\left(\frac{2 B}{m \alpha}\right)^{1 / 2}=\frac{L}{2 \pi}\left(\frac{2 B^{3}}{m \alpha}\right)^{1 / 2}=\frac{L}{2 \pi}\left(\frac{2(\beta \sqrt{m \alpha})^{3}}{m \alpha}\right)^{1 / 2} \\
& N<\left(4 b^{6} m \alpha\right)^{1 / 4} \frac{L}{\pi}
\end{aligned}
$$

