EX352: Hamiltonian in unform magnetic field

Submitted by: Lev Haim \& Yevgeni Estrin

The problem:

(1) A particle is placed in a uniform magnetic field. The field $\vec{B}=(0,0, B)$.

Prove that the standart hamiltonian of the particle in the uniform magnetic field $H=\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)$
we can write as $H=\frac{p^{2}}{2 m}-\frac{e}{2 m c} B L_{z}+\frac{e^{2} B^{2}}{8 m c^{2}}\left(x^{2}+y^{2}\right)$.
(2)Derive using polar coordinate.
(3)What is the effective $\mathrm{V}(\mathrm{r})$ which is experienced by a particle with $L_{z}=\mathrm{m}^{\prime}$.
(4)Generalize your answers to the case of non-uniform magnetic field: $B=\left(0,0, B r^{a}\right)$.

The solution:

(1) Some definitions: $\vec{p}=\left(p_{x}, p_{y}, p_{z}\right)$ and $L_{z}=\epsilon_{z i j} r_{i} p_{j}=x p_{y}-y p_{x}$.

The pastulat $\vec{B}=\operatorname{rot} \vec{A}$ is describing three differential equations.
By using the gauge transformation $A_{z}=0$ we simplified the problem to one differential equation : $\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}=B$, so we get: $\vec{A}=\left(-\frac{1}{2} B y, \frac{1}{2} B x, 0\right)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}=\frac{1}{2 m}\left\{\left(p_{x}^{2}+\frac{e}{2 c} B y\right)^{2}+\left(p_{y}^{2}-\frac{e}{2 c} B x\right)^{2}+p_{z}^{2}\right\}= \\
& =\frac{1}{2 m}\left\{\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{e B}{c}\left(-x p_{y}+y p_{x}\right)+\left(\frac{e B}{2 c}\right)^{2}\left(x^{2}+y^{2}\right)\right\}= \\
& =\frac{p^{2}}{2 m}-\frac{e}{2 m c} B L_{z}+\frac{e^{2} B^{2}}{8 m c^{2}}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

(2)To defined the Hamiltonian in cylindrical coordinates we shell use those relationships $x=r \cos \varphi, y=r \sin \varphi$ while L_{z} is not change when $(x, y, z) \Rightarrow(r, \varphi, z)$ and $p^{2}=p_{r}^{2}+\frac{L^{2}}{r^{2}}$ so we get:

$$
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{L^{2}}{r^{2}}\right)-\frac{e}{2 m c} B L_{z}+\frac{e^{2} B^{2}}{8 m c^{2}} r^{2}
$$

(3)The effective $\mathrm{V}(\mathrm{r})$ is:

$$
V_{e f f}=\frac{L^{2}}{2 m r^{2}}-\frac{e}{2 m c} B L_{z}+\frac{e^{2} B^{2}}{8 m c^{2}} r^{2}
$$

The effective $\mathrm{V}(\mathrm{r})$ which is experienced by a particle with $L_{z}=m^{\prime}$ is:

$$
V_{e f f}\left|l m^{\prime}>=\left(\frac{l(l+1)}{2 m r^{2}}-\frac{e B m^{\prime}}{2 m c}+\frac{e^{2} B^{2}}{8 m c^{2}} r^{2}\right)\right| l m^{\prime}>
$$

(4)By using the gauge transformation we set $A_{r}=A_{z}=0$ in cylindrical coordinates from $\vec{B}=\operatorname{rot} \vec{A}$ we get :

$$
\left.B r^{a}=\frac{1}{r} \frac{\partial\left(r A_{\varphi}\right)}{\partial r} \quad \Rightarrow \quad A_{(} r\right) \hat{\varphi}=\frac{B}{a+2} r^{a+1}
$$

when

$$
\begin{aligned}
& A_{x}=-A_{\varphi} \sin \varphi=-\frac{y A_{\varphi}}{r} \quad, \quad A_{y}=A_{\varphi} \cos \varphi=\frac{x A_{\varphi}}{r} \\
& H=\frac{1}{2 m}\left\{\left(p_{x}, p_{y}, p_{z}\right)-\frac{e}{c}\left(-\frac{y A_{\varphi}}{r}, \frac{x A_{\varphi}}{r}, 0\right)\right\}^{2}= \\
& =\frac{1}{2 m}\left\{p^{2}-\frac{2 e B}{(a+2) c} r^{a} L_{z}+\left[\frac{e B}{(a+2) c}\right]^{2} r^{2 a+2}\right\}
\end{aligned}
$$

It is easy to see that if $a=0$ we have solution for particle in an uniform magnetic field.
And more easy solution can be derived in polar coordinates:

$$
\begin{aligned}
& H=\frac{1}{2 m}\left\{\left(p^{\prime}, p_{\varphi}, p_{z}\right)-\frac{e}{c}(0, A(r), 0)\right\}^{2}= \\
& =\frac{1}{2 m}\left\{p^{\prime 2}-\left(p^{\prime}, p_{\varphi}, p_{z}\right) \cdot \frac{e}{c}(0, A(r), 0)-\frac{e}{c}(0, A(r), 0) \cdot\left(p^{\prime}, p_{\varphi}, p_{z}\right)+\left(\frac{e A}{c}\right)^{2}\right\}= \\
& =\frac{1}{2 m}\left\{p^{\prime 2}-\frac{2 e}{c} A p_{\varphi}+\left(\frac{e A}{c}\right)^{2}\right\}= \\
& =\frac{1}{2 m}\left\{p_{r}^{2}+\frac{L^{2}}{r^{2}}-\frac{2 e B}{(a+2) c} r^{a} L_{z}+\left[\frac{e B}{(a+2) c}\right]^{2} r^{2 a+2}\right\}
\end{aligned}
$$

Remarks:

(2) is wrong.
(4) is better derived in polar coordinates.

