E255: finding the S matrix for a delta function in the origin:

Submitted by: Guy Brand

The problem:

For the potential $V(x)=u \delta(x)$ write the wave function as [sorry for the typo]

$$
\begin{aligned}
& \Psi=A e^{i k x}+B e^{-i k x}[x<0] \\
& \Psi=C e^{i k x}+D e^{-i k x}[x>0]
\end{aligned}
$$

(1) find the S matrix
(2) represent the S matrix with the transmission probability g and three phases.

The solution:

(1) Because the wave amplitude at all points must be defined we require:

$$
\begin{aligned}
& \Psi^{+}(0)=\Psi^{-}(0) \\
& A+B=C+D
\end{aligned}
$$

And because we require integrability at all points we get:

$$
\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon} \frac{-1}{2 m} \frac{d^{2}}{d x^{2}} \Psi+u \delta(x) \Psi d x=\int_{-\varepsilon}^{\varepsilon} i \frac{d}{d t} \Psi d x=0
$$

which, in a simpler writing would be:

$$
\frac{1}{2 m}\left[\frac{d}{d x} \Psi(\varepsilon)-\frac{d}{d x} \Psi(-\varepsilon)\right]=u \Psi(0)
$$

which yields:

$$
\frac{i k}{2 m} C-\frac{i k}{2 m} D-\left(\frac{i k}{2 m} A-\frac{i k}{2 m} B\right)=u(A+B)=u(C+D)
$$

in terms of $u=\frac{U}{v_{E}}$ where $v_{E}=\sqrt{\frac{2 E}{m}}=\frac{k}{m}$ we can simplify this expression:

$$
C-D-(A-B)=-2 u i(A+B)
$$

Let us assume the wave comes from the left: A is then the coming wave amplitude, B is the reflected wave amplitude, C is the transmitted wave amplitude, and D does not exist: we get:
I.

$$
A+B=C
$$

and II.

$$
C-A+B=-2 i u C
$$

now, for doing the same process again for a wave coming from the right, $A=0$ for a wave coming from the right. we get this set of equations:
III.

$$
D+C=B
$$

and IV.

$$
C-D+B=-2 i u B
$$

in this case we get a matrix which looks like this:

$$
\boldsymbol{S}=\left(\begin{array}{ll}
r & t \\
t & r
\end{array}\right)
$$

where r is the relation between B and A or C and D (both are equal because the system is symetric around the Y axis), and in the same manner $t=\frac{B}{D}=\frac{C}{A}$.
by using the equation $(-A+B=C-2 A)$ on II we get:

$$
\begin{aligned}
& 2 A=2(i u+1) C \\
& t=\frac{1}{1-i u}
\end{aligned}
$$

we can see that if we subtitude C for $B-D$ on IV we get

$$
2 D=2(i u+1) B
$$

which gives the same result for t.
if we substitute C for $A+B$ on II we get:

$$
2 B=-2 i u(A+B)
$$

from which we get the relation:

$$
\frac{B}{A}=r=\frac{-i u}{1+i u}
$$

which is the same as $\frac{C}{D}$.
now we can write r and t :

$$
\begin{aligned}
& t=\frac{1}{1+i u}=\frac{1-i u}{1+u^{2}} \\
& r=\frac{-i u}{1+i u}=\frac{-u(i+u)}{1+u^{2}}
\end{aligned}
$$

so

$$
\boldsymbol{S}=\left(\begin{array}{cc}
\frac{-i u}{1+i u} & \frac{1}{1+i u} \\
\frac{1}{1+i u} & \frac{-i u}{1+i u}
\end{array}\right)
$$

(2)
the S matrix with the transmission probability g and three phases, would be written as such:

$$
\mathbf{S}=\mathrm{e}^{i \gamma}\left(\begin{array}{cc}
i \sqrt{1-g} \mathrm{e}^{i \alpha} & \sqrt{g} \mathrm{e}^{-i \phi} \\
\sqrt{g} \mathrm{e}^{i \phi} & i \sqrt{1-g} \mathrm{e}^{-i \alpha}
\end{array}\right)
$$

where

$$
g=|t|^{2}=\frac{1+u^{2}}{\left(1+u^{2}\right)^{2}}=\frac{1}{1+u^{2}}
$$

we get the phase of $i^{*} t$ from:

$$
\arctan \frac{\Im(i t)}{\Re(i t)}=\arctan \frac{1}{u}
$$

and the same goes for r :

$$
\arctan \frac{\Im(r)}{\Re(r)}=\arctan \frac{1}{u}
$$

in both cases we get the phase $\arctan \frac{1}{u}$, so both $\sqrt{1-g}$ and $i \sqrt{g}$ have the same phase:

$$
\gamma=\arctan \frac{1}{u}
$$

because t and r for both waves coming from the left and from the right are the same (the problem is symetric), $\phi=\alpha=0$. if this problem was not only one dimensional, we could have noticed the effect of the vector potential and get ϕ. and if the potential was a-symetric we would have gotten different r phases, and use α for it.

Summarizing formula the way I like [D.C.]:

The \boldsymbol{S} matrix for a delta function scatterer $V(r)=u \delta(r)$ is

$$
\boldsymbol{S}=\left(\begin{array}{ll}
r & t \tag{1}\\
t & r
\end{array}\right)=\mathrm{e}^{i \gamma}\left(\begin{array}{cc}
-i \sqrt{1-g} \mathrm{e}^{i \alpha} & \sqrt{g} \mathrm{e}^{-i \phi} \\
\sqrt{g} \mathrm{e}^{i \phi} & -i \sqrt{1-g} \mathrm{e}^{-i \alpha}
\end{array}\right)
$$

with

$$
\begin{align*}
v_{E} & \equiv(2 E / \mathrm{m})^{1 / 2} \tag{2}\\
u_{E} & \equiv \frac{u}{\hbar v_{E}} \tag{3}\\
t & =\frac{1}{1+i u_{E}} \tag{4}\\
r & =t-1 \tag{5}\\
\gamma & =\arg (t)=-\arctan \left(u_{E}\right) \tag{6}\\
g & =\frac{1}{1+u_{E}^{2}}=(\cos (\gamma))^{2} \tag{7}\\
\alpha & =0 \tag{8}\\
\phi & =0 \tag{9}
\end{align*}
$$

Note that we use the common ad-hoc convention of writing the channel functions as $\psi(r)=A \exp (-i k r)+B \exp (-i k r)$ where $r=|x|$. In the alternate convention, which is used for s-scattering, $B \mapsto-B$, so as to have $\boldsymbol{S}=\mathbf{1}$ in the limit of zero coupling $(u=\infty)$.

