E2122: Bound state in a site coupled to a 1-D conductor

Submitted by: Dror Vinkler, Nir Yarimi

The problem:

In this problem we find the energy of the bound state E of a particle in a system of one state coupled with a 1-D conductor.
The particle has a mass M. The conductor is infinite: $x \in\{-\infty, \infty\}$.
The site to which the particle is bound is near the point x_{0}.
If the site was decoupled from the conductor, the particle's bound energy was E_{0}.
In practice, the site is coupled to the conductor, and the hamiltonian is

$$
H=\frac{p^{2}}{2 M}+|0\rangle E_{0}\langle 0|+\left|x_{0}\right\rangle \lambda\langle 0|+|0\rangle \lambda\left\langle x_{0}\right|
$$

The standard representation of the wave function in the x basis is $\Psi \rightarrow\left(\psi_{0}, \psi(x)\right)$.
Where the amplitudes are $\psi_{0}=\langle 0 \mid \Psi\rangle, \psi(x)=\langle x \mid \Psi\rangle$.
With the normalization $\left|\psi_{0}\right|^{2}+\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$.
(1) Write $\langle 0| H|\Psi\rangle$ in the standard representation.
(2) Write $\langle x| H|\Psi\rangle$ in the standard representation.

Write the equations $H|\Psi\rangle=E|\Psi\rangle$ in the special representation.
Tip: project the equation on the states $\langle 0|,\langle x|$ and use the results from previous clauses.
Show that we get a closed equation for $\psi(x)$ with an effective potential of

$$
V(x ; E)=u(E) \delta\left(x-x_{0}\right)
$$

Notice that at this point we treat the bound energy E as a known constant. Tip: without loss of generality, you can assume the location x_{0} is the origin.
(3) Write the expression for $u(E)$.
(4) Write an equation for the bound energy E.
(5) Solve the equation for the case $E_{0}=0$.

The solution:

$$
\begin{equation*}
\langle 0| H|\Psi\rangle=E_{0} \psi_{0}+\lambda \psi\left(x_{0}\right) \tag{1}
\end{equation*}
$$

(2)

$$
\langle x| H|\Psi\rangle=-\frac{\psi^{\prime \prime}(x)}{2 M}+\delta\left(x-x_{0}\right) \lambda \psi_{0}
$$

(3)

$$
\begin{aligned}
& \langle 0| H|\Psi\rangle=E_{0} \psi_{0}+\lambda \psi(0)=E \psi_{0}=\langle 0| E|\Psi\rangle \\
& \langle x| H|\Psi\rangle=-\frac{\psi^{\prime \prime}(x)}{2 M}+\delta(x) \lambda \psi_{0}=E \psi(x)=\langle x| E|\Psi\rangle
\end{aligned}
$$

We can isolate ψ_{0} from the first equation and substitute it in the second equation, and get

$$
-\frac{\psi^{\prime \prime}(x)}{2 M}+\frac{\lambda^{2}}{E-E_{0}} \delta(x) \psi(0)=E \psi(x)
$$

Therefore

$$
V(x ; E)=\frac{\lambda^{2}}{E-E_{0}} \delta(x)=u(X) \delta(x)
$$

(4) $\psi(x)$ will be of the form

$$
\psi(x)= \begin{cases}A e^{-k x} & \text { if } x \geq 0 \\ A e^{k x} & \text { if } x<0\end{cases}
$$

For $x \neq 0$:

$$
-\frac{k^{2}}{2 M}=E \Rightarrow k=\sqrt{-2 M E}
$$

For $x=0$:

$$
\psi^{\prime}\left(0^{+}\right)-\psi^{\prime}\left(0^{-}\right)=2 M \frac{\lambda^{2}}{E-E_{0}} \psi(0)
$$

Substituting k with its value from the first equation, we get

$$
\sqrt{-2 M E}=\frac{M \lambda^{2}}{E_{0}-E}
$$

(5) For $E_{0}=0$:

$$
E=-\sqrt[3]{\frac{M \lambda^{4}}{2}}
$$

