E212: Particle in an potential well, with scatterer

Submitted by: Yaakov Kleeorin

The problem:

A particle is placed inside an infinite square well $[0,2 \mathrm{~d}]$ in the center there is a delta scatterer $V(x)=-u \delta(x-d):$
(1) What is the minimum u for which the energy states are negative?
(2) How does the wave function look when we decrease u to a point where the ground state $\mathrm{E}=0$?

The solution:

The time independent schrodinger equation is as follows:

$$
\left[\frac{\hat{p}^{2}}{2 m}+V(x)\right] \psi(x)=E \psi(x)
$$

inserting $\hat{p}=-i \frac{d}{d x}$ and the potential we get:

$$
\left[-\frac{1}{2 m} \nabla^{2}-u \delta(x-d)\right] \psi(x)=E \psi(x)
$$

with the following boundry conditions for the infinite walls and delta stitching:

$$
\begin{aligned}
& {\left.[1] \psi\right|_{x=0}=\left.\psi\right|_{x=2 d}=0} \\
& {\left.[2] \psi\right|_{x=d-}=\left.\psi\right|_{x=d+}}
\end{aligned}
$$

by means of integrating the Schrodinger equation over infinitysimal ϵ around $\mathrm{x}=\mathrm{d}$ we get the a second stitching condition:

$$
\left.[3] \frac{d \psi}{d x}\right|_{x=d+}-\left.\frac{d \psi}{d x}\right|_{x=d-}=\left.2 m u \psi\right|_{x=d}
$$

using the equation and the boundry conditions we can introduce a wave function as follows (already satisfying condition [1]):

$$
\begin{aligned}
& {[0, d] \quad \psi(x)=\left\{\begin{array}{lll}
A \sin (k x) & \text { for } & E>0 \\
A \sinh (a x) & \text { for } & E<0
\end{array}\right.} \\
& {[d, 2 d] \quad \psi(x)=\left\{\begin{array}{lll}
A \sin (k(2 d-x)) & \text { for } & E>0 \\
A \sinh (a(2 d-x)) & \text { for } & E<0
\end{array}\right.}
\end{aligned}
$$

from the scrodinger equation we get:

$$
\begin{aligned}
& k=\sqrt{2 m E} \text { for } E>0 \\
& a=\sqrt{-2 m E} \text { for } E<0
\end{aligned}
$$

using the stitching conditions:

$$
\left\{\begin{array}{lll}
A k \cos (k d)+A k \cos (k d)=2 m u A \sin (k d) & \text { for } \quad E>0 \\
A a \cosh (a d)+A a \cosh (a d)=2 m u A \sinh (a d) & \text { for } \quad E<0
\end{array}\right.
$$

or finally:

$$
\left\{\begin{array}{lll}
k \cot (k d)=m u & \text { for } & E>0 \\
a \operatorname{coth}(a d)=m u & \text { for } & E<0
\end{array}\right.
$$

(1) we use the second relation to find the minimum for which E is still negative which means $E \rightarrow 0-$. we remember:

$$
E=-\frac{a^{2}}{2 m}
$$

if we take E to zero we get:

$$
\sqrt{2 m E} \operatorname{coth}(\sqrt{2 m E} d)=m u
$$

reminded that:

$$
\operatorname{coth}(c x)=\frac{1}{\tanh (c x)} \rightarrow \frac{1}{c x}
$$

we get:

$$
\sqrt{2 m E} \frac{1}{\sqrt{2 m E d}}=m u \Rightarrow u_{0}=\frac{1}{m d}
$$

So energy levels will remain negative for $u>\frac{1}{m d}$
(2) Now let us take the limit [a goes to zero] for the wave function:

$$
E<0 \quad \psi(x)=\left\{\begin{array}{lll}
\lim _{a \rightarrow 0} A \sinh (a x) & \text { for } & {[0, d]} \\
\lim _{a \rightarrow 0} A \sinh (a(2 d-x)) & \text { for } & {[d, 2 d]}
\end{array}\right.
$$

reminded that:

$$
\sinh (c x) \rightarrow c x
$$

we get:

$$
E<0 \quad \psi(x)=\left\{\begin{array}{lll}
\tilde{A} x & \text { for } & {[0, d]} \\
\tilde{A}(2 d-x) & \text { for } & {[d, 2 d]}
\end{array}\right.
$$

Another way of getting the wave function at $\mathrm{E}=0$ is by inserting E into the schrodinger equation:

$$
\left[-\frac{1}{2 m} \nabla^{2}-u \delta(x-d)\right] \psi(x)=0
$$

This gives rise to the form

$$
\psi(x)=\left\{\begin{array}{lll}
A_{1} x+B_{1} & \text { for } & {[0, d]} \\
A_{2} x+B_{2} & \text { for } & {[d, 2 d]}
\end{array}\right.
$$

Using the same boundery conditions and stitching

$$
\begin{aligned}
& {\left.[1] \psi\right|_{x=0}=\left.\psi\right|_{x=2 d}=0} \\
& {\left.[2] \psi\right|_{x=d-}=\left.\psi\right|_{x=d+}}
\end{aligned}
$$

we get:

$$
\psi(x)=\left\{\begin{array}{lll}
A x & \text { for } & {[0, d]} \\
A(2 d-x) & \text { for } & {[d, 2 d]}
\end{array}\right.
$$

And the delta stitching is automatically satisfied because we specified the u for $E=0(u=1 / \mathrm{md})$:

$$
\begin{aligned}
& {\left.[3] \frac{d \psi}{d x}\right|_{x=d+}-\left.\frac{d \psi}{d x}\right|_{x=d-}=\left.2 m u \psi\right|_{x=d}} \\
& A+A=2 A u m d=2 A
\end{aligned}
$$

