E166: Josephson junction and current

Submitted by: Yair Vered , Arnon Mizrahy

The problem:

A capacitor assembled from two superconducting plates. In a superconductor the charge carriers are cooper pairs, which can be referred as bosons with the charge $e^*=2e$.

At a neutral state $|n = 0\rangle$ some of the pairs are at the left plate and some at the right one.

The charged state $|n\rangle$ obtained by moving n pairs from the left plate to the right plate.

In order to describe the system we use the basis $|n\rangle$, n = integer

WE define the translation operator D as: $D|n\rangle = |n+1\rangle$

Assume that the shift Amplitude (per time unit) between the plates (by tunnling) is Ω , and the capacitance of the capacitor is C.

- 1. Define the eigenvalues $exp(i\varphi)$ and the eigenstates $|\varphi\rangle$ of D.
- 2. Write the Hamiltonian of the system using the c.c operatores φ ,N.
- 3. Define the current operator J as $\frac{d\langle n \rangle}{dt}$.

4. How does the capacitance effect the current as function of time?

The solution:

(1) The problem is similar to a sites system, where D is the translation operator

$$D|\varphi\rangle = e^{(i\varphi)}|\varphi\rangle$$

(2) The operator N can be identified as the position operator, and operator φ as the momentum operator.

$$H = E_0 + \Omega D + \Omega^* D^\dagger$$

assuming Ω is real, and the average energy of the capacitor is $\frac{Q^2}{2C}$ we'll get:

$$H = \frac{\left(e^*N\right)^2}{2C} + \Omega(e^{i\varphi} + e^{-i\varphi}) = \frac{\left(e^*N\right)^2}{2C} + 2\Omega\cos\varphi$$

(3)

$$J = \frac{\partial \langle N \rangle}{\partial t} = i \left[2\Omega \cos \varphi, N \right] = i(-i2\Omega \sin \varphi) = 2\Omega \sin \varphi$$

(4)

$$\frac{\partial J}{\partial t} = i \left[H, J \right] = \frac{(e^*)^2}{2C} \Omega \left[N^2, D + D^{\dagger} \right] =$$

$$-\frac{(e^*)^2}{2C}\Omega\left[\left(DN-ND\right)N+N\left(DN-ND\right)-\left(D^{\dagger}N-ND^{\dagger}\right)N-N\left(D^{\dagger}N-ND^{\dagger}\right)\right]=$$

$$\frac{(e^*)^2\Omega}{C}\left(Ncos\varphi+cos\varphi N\right)$$

The current decreased with the increase of the capacitance.