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The problem:

Qubit is a device with two basis states |x = 0〉, |x = 1〉. Assume that both states have the same
energy and that the jumping amplitude between them is c. We are given a system of two qubits
with basis states |xa, xb〉. It turns out that when the two qubits are in the state x = 1, there is an
energetic payment u. The hamiltonian of the system can be written as H = H0 + uV .

(1) Write the matrix of V in the standard basis (no algebraic work is needed).
The hamiltonianH0 is diagonal in a certain basis. Indicate the basis states as |SS〉, |SA〉, |AS〉, |AA〉.
(2) Write column vectors which represent the new basis states in the standard basis.
(3) Write the diagonal matrix which represents H0 in the basis you defined (no algebraic work is
needed).
(4) Write in the new basis the perturbation matrix V .
(5) Find the energy eigenvalues of the system up to the first order in the interaction.
(6) Find the ground state energy up to the second order in the interaction.

The solution:

(1) The states of a single qubit are:

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
With the appropriate hamiltonian:

H̃ =
(

0 c
c 0

)
We construct the basis of the composite system using the tensor product |xa, xb〉 = |xa〉 ⊗ |xb〉 on
the single qubit states:

|0, 0〉 =


1
0
0
0

 |0, 1〉 =


0
1
0
0

 |1, 0〉 =


0
0
1
0

 |1, 1〉 =


0
0
0
1


The effect of perturbation is only on the |1, 1〉 state, meaning a change in this state’s energy by u.
Therefore the perturbation matrix in the standard basis is:

V = u|1, 1〉〈1, 1| =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 u


(2) The unperturbed hamiltonian for a single qubit is diagonal in the symmetric and antisymmetric
basis:

|S〉 =
1√
2

(
1
1

)
|A〉 =

1√
2

(
1
−1

)
1



From here we obtain the basis for the composite system, in the same method as in section (1):

|SS〉 =
1
2


1
1
1
1

 |SA〉 =
1
2


1
−1
1
−1

 |AS〉 =
1
2


1
1
−1
−1

 |AA〉 =
1
2


1
−1
−1
1


(3) The unperturbed hamiltonian in the new basis is:

H0 = H̃ ⊗ 12×2 + 12×2 ⊗ H̃ =
(

c 0
0 −c

)
⊗

(
1 0
0 1

)
+

(
1 0
0 1

)
⊗

(
c 0
0 −c

)

⇒ H0 =


2c 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2c


(4) The perturbation matrix is easily obtained by noticing that V operates only on the last com-
ponent of the state vectors:

V |SS〉 = V |AA〉 =
u

2


0
0
0
1

 V |SA〉 = V |AS〉 =
u

2


0
0
0
−1



⇒ V =
u

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


(5) We can see that the central block of the hamiltonian is degenerate, and the perturbation couples
these degenerate states, so before using perturbation theory we must remove the degeneracy:

H(deg) =
(

0 0
0 0

)
+

u

4

(
1 1
1 1

)
After diagonalization, the central block is:

H(deg) =
u

4

(
2 0
0 0

)
Where we used the symmetric and antisymmetric states. We are only interested in the diagonal of
the hamiltonian for the first order perturbation, meaning:

En = E(0)
n + Vn,n +O(u2)

So we don’t have to worry about off-diagonal values that were changed by this diagonalization. The
energy values are (from the ground state up):

E0 ≈ −2c +
u

4

2



E1 ≈ 0

E2 ≈
u

2

E3 ≈ 2c +
u

4

(6) The ground state energy up to the second order is of the form:

E0 = E(0)
n + V0,0 +

∑
m6=0

|Vm,0|2

E
(0)
0 − E

(0)
m

+O(u3)

E
(2)
0 =

u2

16

(
1
−2c

+
1
−2c

+
1
−4c

)
= −5u2

64c

So the ground state energy is:

E0 ≈ −2c +
u

4
− 5u2

64c

3


