E1472: Three site system in a row, Dynamics

Submitted by: Arnon Ben-Meir, Tomer Ygael

The problem:

A particle in a three site system is described using the standard basis: $|1\rangle,|2\rangle,|3\rangle$, with the Hamiltonian

$$
\mathcal{H}=\left(\begin{array}{ccc}
0 & c_{a} & 0 \\
c_{a} & 0 & c_{b} \\
0 & c_{b} & 0
\end{array}\right), \quad c_{a}=c \cos (\theta), c_{b}=c \sin (\theta)
$$

The particle is prepared in the first site at $\mathrm{t}=0$.
Express your answer with θ, c.
To solve clause (1) find the roots of the polynomial equation (very simple formula).
(1) Find the eigenvalues of the Hamiltonian: E_{0}, E_{+}, E_{-}.
(2) Using the standad basis write the eigenstates $|0\rangle,|+\rangle,|-\rangle$.
(3) Write the intial state in the energy basis.
(4) Write an expression for $P(t)$, the probability of finding the particle in the first site after a time period of t.
(5) Write and expression for $I(t)$, the expectation vaule of the current which is measured between sites $|2\rangle$ and $|3\rangle$ at time t .

The solution:

(1) Using diagonalization, we solve the equation,

$$
\operatorname{det}(\mathcal{H}-\lambda \mathbb{I})=0
$$

thus finding the eigenvalues:

$$
E_{0}=0 \quad E_{ \pm}= \pm c
$$

(2) Solving $\left(\mathcal{H}-\lambda_{i} \mathbb{I}\right)$ we find that the eigenstates of the Hamiltonian are:

$$
|0\rangle=\left(\begin{array}{c}
\sin \theta \\
0 \\
-\cos \theta
\end{array}\right), \quad|+\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos \theta \\
1 \\
\sin \theta
\end{array}\right), \quad|+\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos \theta \\
-1 \\
\sin \theta
\end{array}\right)
$$

and written in the dirac notation:
(3) Expressing the initial state in the energy basis we get:

$$
|1\rangle=\sin \theta|0\rangle+\frac{1}{\sqrt{2}} \cos \theta(|+\rangle+|-\rangle)
$$

(4) To find $\mathrm{P}(\mathrm{t})$ we use the formula : $P(t)=|\langle 1 \mid \psi(t)\rangle|^{2}$

First we need to define $\psi(t)$

$$
\Phi_{t}=|1\rangle \mathrm{e}^{-i E_{1} t}=\sin \theta|0\rangle+\frac{1}{\sqrt{2}} \cos \theta\left(|+\rangle \mathrm{e}^{-i c t}+|-\rangle \mathrm{e}^{i c t}\right)
$$

then $\psi(t)=\left(\begin{array}{l}\left\langle 1 \mid \Phi_{t}\right\rangle \\ \left\langle 2 \mid \Phi_{t}\right\rangle \\ \left\langle 3 \mid \Phi_{t}\right\rangle\end{array}\right)$ giving us:

$$
\begin{aligned}
& \psi(t)=\left(\begin{array}{c}
\sin ^{2} \theta+\cos ^{2} \theta \cos (c t) \\
\cos \theta(-i \sin (c t)) \\
-\sin \theta \cos \theta(1-\cos (c t))
\end{array}\right) \\
& P(t)=\left|\sin ^{2} \theta+\frac{1}{2} \cos ^{2} \theta \mathrm{e}^{-i c t}+\frac{1}{2} \cos ^{2} \theta \mathrm{e}^{i c t}\right|^{2}=\left|\sin ^{2} \theta+\cos ^{2} \theta \cos (c t)\right|^{2}
\end{aligned}
$$

(5) In order to find $I(t)$ we first must find the operator \hat{I} we can do that in two ways :

1. The current operator is defined as $\hat{I}=\left.\frac{\partial \hat{\mathcal{H}}}{\partial \phi}\right|_{\phi=0}$, in order to do that we must place a test flux between sites $|2\rangle$ and $|3\rangle$ giving us

$$
\hat{\mathcal{H}}=\left(\begin{array}{ccc}
0 & c_{a} & 0 \\
c_{a} & 0 & c_{b} \mathrm{e}^{i \phi} \\
0 & c_{b} \mathrm{e}^{-i \phi} & 0
\end{array}\right)
$$

Using this \mathcal{H} we can find \hat{I} :

$$
\hat{I}=\left.\frac{\partial \hat{\mathcal{H}}}{\partial \phi}\right|_{\phi=0}=i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c_{b} \\
0 & -c_{b} & 0
\end{array}\right)
$$

2. Using the general site model:

$$
\begin{aligned}
& \hat{I}_{i \rightarrow j}=-i\left[\hat{\mathcal{H}}, \hat{P}^{i}\right]=-i\left[|j\rangle \mathcal{H}_{j i}\langle i|-|i\rangle \mathcal{H}_{i j}\langle j|\right] \\
& \hat{I}_{2 \rightarrow 3}=i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c_{b} \\
0 & -c_{b} & 0
\end{array}\right)
\end{aligned}
$$

To find the expectation value of $\hat{I}_{2 \rightarrow 3}(t)$:

$$
\langle\psi(t)| \hat{I}|\psi(t)\rangle=\left(\begin{array}{l}
\psi_{1},
\end{array} \quad \psi_{2}, \quad \psi_{3}\right) \cdot\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & i c_{b} \\
0 & -i c_{b} & 0
\end{array}\right) \cdot\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)=2 C_{b} \cos ^{2} \theta \sin \theta \sin (c t)(1-\cos (c t))
$$

With the use of a simple trigonometric identity we finally get:

$$
\langle I(t)\rangle=\frac{1}{2} c|\sin \theta|^{2} \sin (c t)(1-\cos (c t))
$$

