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The solution:

(1) The wave function that describes the particle is the symetric eigenstate:

ψ(x) = e(−
(x+a)2

2σ2 ) + e(−
(x−a)2

2σ2 )

In order to find the momentum distribution function, we will have to perform a Fourier Transform.
We know that for a Gaussian function, the F.T. is:

F.T.

[
e−

x2

2σ2

]
∝ e−

a2k2

2

Therefore:

ψ̃(k) = F.T [ψ(x)] = e−ika · e−
σ2k2

2 + e+ika · e−
σ2k2

2 = e−
σ2k2

2 · 2cos(ka)

For the symetric wave function, the distribution function will be:

P (k) =
∣∣∣ψ̃(k)

∣∣∣2 = e−σ2k2 · 4cos2(ka)

(2) The wave function describes the summation of the

RIGHT location |R >= e(−
(x−a)2

2σ2 ) and the LEFT location |L >= e(−
(x+a)2

2σ2 ) ,
therefore the symetric wave function can be written as ψ(x) ≡ |S >= |L > +|R >.
It is easy to see that the anti-symetric wave function, |A > will be described as

|A >= |L > −|R >= e(−
(x+a)2

2σ2 ) − e(−
(x−a)2

2σ2 )

Hance, after a Fourier Transform, we will get:

|Ã(k) >= F.T [|A >] = e−
σ2k2

2 · 2i · sin(ka)

And for the anti-symetric wave function, the distribution function will be:

P (k) = e−σ2k2 · 4sin2(ka)

(3) For a 2-sites system with a potential u and transmission amplitude c we will get the Hemiltonian:

H =
(
u/2 c
c −u/2

)
The first scenario describes ”sudden change” where a potential u is turned on. The condition u >> c
allows us to rewrite the Hemiltonian as :

H =
(
u/2 0
0 −u/2

)
The energies are ±u/2 and therefore we can write the time dependant wave function:

ψt(x) = e−i u
2
t|L > +e+i u

2
t|R >

1



After a Fourier Transform we will get:

ψ̃t(k) = [e−i(ka+u
2
t) + e+i(ka+u

2
t)] · e−

σ2k2

2 = cos(ka+
u

2
t) · e−

σ2k2

2

Therefore the momentum distribution function will be:

P (k) = cos2(ka+
u

2
t) · e−σ2k2

(4) In order to find the time t where minimum amount of particles will stay in the system (where
most of the particles will be in the anti-symetric system) we should remember that the anti-symetric
momentum distribution function is proportional to sin2(ka) and the time t will be the time where
the function P (k) changes from cos2(ka) to sin2(ka).
The condition is:

ut

2
=
π

2
+ 2πn 7−→ t =

π

u
+

4πn
u

(5) Scenario 2 describes an Adiabatic change where the potential u is slowly turned on, and when it
is much larger than the transmission amplitude c, u >> c, it is suddenly turned off. At that point
u = 0 and after time t the momentum distribution is examined.
We will assume that the potential is set in a way where the left state |L > has higher energy level
than the right state |R >. We Know that in 2 state system, the symetric state is the Base state,
therefore the lowest state.
During an adiabatic change, the wavefunction might change, but the energy levels don’t! So in time
t = 0 (the first moment when u = 0) the wave function is ψ = |R >.
The Hemiltonian based on the standard eigen states will be:

H =
(

0 c
c 0

)
The Hemiltonian based on the symetric and anti-symetric states will be:

H =
(
c 0
0 −c

)
Now we have to take the wavefunction and find it’s time evolution:

ψt(x) = Û(t)|R >= |S > ·e−ict − |A > ·e+ict

ψ̃(k) = e−ict · e−
σ2k2

2 · 2cos(ka)− e+ict · e−
σ2k2

2 · 2i · sin(ka)

P (k) =
∣∣∣ψ̃(k)

∣∣∣2 = 4e−σ2k2 · [1 + sin(2ka) · sin(2ct)]

(6) The wave function is occilating between the two optional states |L >, |R >.
The time t when the wave function is a perfect Gaussian (and does not modulate) is the time when
the wave function is exactly in one of the two states.
After a full time period the wavefunction returns to it’s original location (|R >). after half a period
the function will be in the other state (|L >). therefore......

t =
π

ω
· integer → ω = 2c → t =

π

2c
· integer

The problem???
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