E143: 2 sites Bose-Einstein Condensation experiment
 Submitted by: Guy Bareli 021356613 ; Ben Harel 031199292

The solution:

(1) The wave function that describes the particle is the symetric eigenstate:

$$
\psi(x)=e^{\left(-\frac{(x+a)^{2}}{2 \sigma^{2}}\right)}+e^{\left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)}
$$

In order to find the momentum distribution function, we will have to perform a Fourier Transform. We know that for a Gaussian function, the F.T. is:

$$
\text { F.T. }\left[e^{-\frac{x^{2}}{2 \sigma^{2}}}\right] \propto e^{-\frac{a^{2} k^{2}}{2}}
$$

Therefore:

$$
\tilde{\psi}(k)=F \cdot T[\psi(x)]=e^{-i k a} \cdot e^{-\frac{\sigma^{2} k^{2}}{2}}+e^{+i k a} \cdot e^{-\frac{\sigma^{2} k^{2}}{2}}=e^{-\frac{\sigma^{2} k^{2}}{2}} \cdot 2 \cos (k a)
$$

For the symetric wave function, the distribution function will be:

$$
P(k)=|\tilde{\psi}(k)|^{2}=e^{-\sigma^{2} k^{2}} \cdot 4 \cos ^{2}(k a)
$$

(2) The wave function describes the summation of the

RIGHT location $\left\lvert\, R>=e^{\left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)}\right.$ and the LEFT location $\left\lvert\, L>=e^{\left(-\frac{(x+a)^{2}}{2 \sigma^{2}}\right)}\right.$, therefore the symetric wave function can be written as $\psi(x) \equiv|S>=|L>+| R>$. It is easy to see that the anti-symetric wave function, $\mid A>$ will be described as
$\left|A>=|L>-| R>=e^{\left(-\frac{(x+a)^{2}}{2 \sigma^{2}}\right)}-e^{\left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)}\right.$
Hance, after a Fourier Transform, we will get:

$$
\left\lvert\, \tilde{A}(k)>=F . T[\mid A>]=e^{-\frac{\sigma^{2} k^{2}}{2}} \cdot 2 i \cdot \sin (k a)\right.
$$

And for the anti-symetric wave function, the distribution function will be:

$$
P(k)=e^{-\sigma^{2} k^{2}} \cdot 4 \sin ^{2}(k a)
$$

(3) For a 2 -sites system with a potential u and transmission amplitude c we will get the Hemiltonian:

$$
\mathcal{H}=\left(\begin{array}{cc}
u / 2 & c \\
c & -u / 2
\end{array}\right)
$$

The first scenario describes "sudden change" where a potential u is turned on. The condition $u \gg c$ allows us to rewrite the Hemiltonian as :

$$
\mathcal{H}=\left(\begin{array}{cc}
u / 2 & 0 \\
0 & -u / 2
\end{array}\right)
$$

The energies are $\pm u / 2$ and therefore we can write the time dependant wave function:

$$
\psi_{t}(x)=e^{-i \frac{u}{2} t}\left|L>+e^{+i \frac{u}{2} t}\right| R>
$$

After a Fourier Transform we will get:

$$
\tilde{\psi}_{t}(k)=\left[e^{-i\left(k a+\frac{u}{2} t\right)}+e^{+i\left(k a+\frac{u}{2} t\right)}\right] \cdot e^{-\frac{\sigma^{2} k^{2}}{2}}=\cos \left(k a+\frac{u}{2} t\right) \cdot e^{-\frac{\sigma^{2} k^{2}}{2}}
$$

Therefore the momentum distribution function will be:

$$
P(k)=\cos ^{2}\left(k a+\frac{u}{2} t\right) \cdot e^{-\sigma^{2} k^{2}}
$$

(4) In order to find the time t where minimum amount of particles will stay in the system (where most of the particles will be in the anti-symetric system) we should remember that the anti-symetric momentum distribution function is proportional to $\sin ^{2}(k a)$ and the time t will be the time where the function $P(k)$ changes from $\cos ^{2}(k a)$ to $\sin ^{2}(k a)$.
The condition is:

$$
\frac{u t}{2}=\frac{\pi}{2}+2 \pi n \quad \longmapsto \quad t=\frac{\pi}{u}+\frac{4 \pi n}{u}
$$

(5) Scenario 2 describes an Adiabatic change where the potential u is slowly turned on, and when it is much larger than the transmission amplitude $c, u \gg c$, it is suddenly turned off. At that point $u=0$ and after time t the momentum distribution is examined.
We will assume that the potential is set in a way where the left state $\mid L>$ has higher energy level than the right state $|R\rangle$. We Know that in 2 state system, the symetric state is the Base state, therefore the lowest state.
During an adiabatic change, the wavefunction might change, but the energy levels don't! So in time $t=0$ (the first moment when $u=0$) the wave function is $\psi=|R\rangle$.
The Hemiltonian based on the standard eigen states will be:

$$
\mathcal{H}=\left(\begin{array}{ll}
0 & c \\
c & 0
\end{array}\right)
$$

The Hemiltonian based on the symetric and anti-symetric states will be:

$$
\mathcal{H}=\left(\begin{array}{cc}
c & 0 \\
0 & -c
\end{array}\right)
$$

Now we have to take the wavefunction and find it's time evolution:

$$
\begin{aligned}
& \psi_{t}(x)=\hat{U}(t)\left|R>=\left|S>\cdot e^{-i c t}-\right| A>\cdot e^{+i c t}\right. \\
& \tilde{\psi}(k)=e^{-i c t} \cdot e^{-\frac{\sigma^{2} k^{2}}{2}} \cdot 2 \cos (k a)-e^{+i c t} \cdot e^{-\frac{\sigma^{2} k^{2}}{2}} \cdot 2 i \cdot \sin (k a) \\
& P(k)=|\tilde{\psi}(k)|^{2}=4 e^{-\sigma^{2} k^{2}} \cdot[1+\sin (2 k a) \cdot \sin (2 c t)]
\end{aligned}
$$

(6) The wave function is occilating between the two optional states $|L\rangle,|R\rangle$.

The time t when the wave function is a perfect Gaussian (and does not modulate) is the time when the wave function is exactly in one of the two states.
After a full time period the wavefunction returns to it's original location $(\mid R>)$. after half a period the function will be in the other state $(\mid L>)$. therefore......

$$
t=\frac{\pi}{\omega} \cdot \text { integer } \quad \rightarrow \quad \omega=2 c \quad \rightarrow \quad t=\frac{\pi}{2 c} \cdot \text { integer }
$$

The problem???

