E140: Two particles in two sites, oscillations

Submitted by: Amir Hirsch

The problem:

Two different particles a and b are given in two different sites. The system is symetric to transparent and the jump amplitude per time unit is Δ. (assume Δ is real without the generality limitation). The standard basis is: $\left|x_{a}, x_{b}\right\rangle=|1,1\rangle,|1,2\rangle,|2,1\rangle,|2,2\rangle$.
(1) Write the Hamiltonian H in the standard basis.

Note that in an infinite time step only one particle can move between sites. The Probability for a simultanian movemant is zero.
(2) Write the matrix presentation of the operator T which switches the particles.
(3) Define a set of states $|i=L, R, S, A\rangle$ in which $T_{i j}$ is diagnol.

From now on assume the particles are identicle with spin zero (bosons!).
(4) Write the Hamiltonian $H_{i j}$ in the basis $|i=L, R, S\rangle$.
(5) Write in the same basis the transparent operator $R_{i} j$.
(6) Define a set of states in which R is diagnol.
(7) Find the eigensates of the hamiltonian. write them in the standard basis.
(8) What are the eigenenergies ?

The system is prepared at $t=0$ to the symetric state S.
(9) The number of particles in the left site is measured. what are the possible results ?
(10) What is the period of the system oscillations?
(11) What is the answer to (9) after half a period ?

The solution:

(1)

The Hamiltonian in the standard basis is

$$
\mathcal{H}=\left(\begin{array}{cccc}
0 & \Delta & \Delta & 0 \\
\Delta & 0 & 0 & \Delta \\
\Delta & 0 & 0 & \Delta \\
0 & \Delta & \Delta & 0
\end{array}\right)
$$

(2)

The operator T which switches the particles is

$$
\mathcal{T}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(3)

A set of states in which $T_{i j}$ is diagnol:
$|L\rangle=|1,1\rangle$
$|R\rangle=|2,2\rangle$
$|S\rangle=\frac{1}{\sqrt{2}}(|1,2\rangle+|2,1\rangle)$

$$
|A\rangle=\frac{1}{\sqrt{2}}(|1,2\rangle-|2,1\rangle)
$$

(4)
the Hamiltonian in the basis $|i=L, R, S\rangle$ is

$$
\mathcal{H}=\left(\begin{array}{ccc}
0 & 0 & \Delta \\
0 & 0 & \Delta \\
\Delta & \Delta & 0
\end{array}\right)
$$

(5)
the transparent operator R is

$$
\mathcal{R}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(6)

A set of states in which R is diagnol:
$|S\rangle=\frac{1}{\sqrt{2}}(|1,2\rangle+|2,1\rangle)$

(7)

The eigensates of the hamiltonian are
$\left|E_{1}\right\rangle=|-\rangle=\frac{1}{\sqrt{2}}(|1,1\rangle-|2,2\rangle)$
$\left|E_{2}\right\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|S\rangle)=\frac{1}{\sqrt{2}}(|1,1\rangle+|2,2\rangle+|1,2\rangle+|2,2\rangle)$
$\left|E_{3}\right\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|S\rangle)=\frac{1}{\sqrt{2}}(|1,1\rangle+|2,2\rangle-|1,2\rangle-|2,2\rangle)$
(8)

The eigenenergies are
$E_{1}=0$
$E_{2}=2 \Delta$
$E_{3}=-2 \Delta$
(9)

If the system is in the symetric state and we measure how many particles are in the left site the result will be 1 .
(10)

The period of the system oscillations is
$T=\frac{\pi}{2 \Delta}$
(11)

If the system is prepared in the state $|S\rangle$ after half a period $T=\frac{\pi}{4 \Delta}$ it will be in the state $|+\rangle$, and then if we measure the number of particles in the left site the possible results are: 0,2 .

Remarks:

(4) Missing numerical factor in the Hamiltonian.

