E139: A partical in a four site system

Submitted by: Roy Bensimon

The problem

A system with four sites described by the Hamiltonian:

$$H = \begin{pmatrix} 0 & 1 & 0 & c \\ 1 & 0 & c & 0 \\ 0 & c & 0 & 1 \\ c & 0 & 1 & 0 \end{pmatrix}$$

The electrical charge is e.

- (1) Write the Hamiltonian if we add a magnetic flux Φ through the ring that connected site $|1\rangle$ to site $|2\rangle$. (2) Define the current operator using the formula $I=-\frac{dH}{d\Phi}_{\Phi=0}$. We assume that the flux is zero. (3) Write in the standart basis the eigenstates and the energies eigenvalues when c=0. Use in $|S_1\rangle$, $|A_1\rangle$, $|S_2\rangle$, $|A_2\rangle$.
- (4) Write the Hamiltonian in the new basis.
- (5) Write the energies eigenvalues (E_1, E_2, E_3, E_4) and the eigenstates $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$ of the system as a superposition of the states $|S_1\rangle$, $|A_1\rangle$, $|S_2\rangle$, $|A_2\rangle$.
- (6) Write the energies eigenstats aforementioned in the standart basis.

The partial is plased in site one $|\Psi(t=0)\rangle = |1\rangle$.

(7) Calculate the current that flow through the ring as a time function $\langle \Psi(t) | I | \Psi(t) \rangle$.

The solution

(1) Magnetic flux add a phase to the Hamiltonian.

$$H = \begin{pmatrix} 0 & e^{-i\varphi} & 0 & c \\ e^{i\varphi} & 0 & c & 0 \\ 0 & c & 0 & 1 \\ c & 0 & 1 & 0 \end{pmatrix}$$

$$\varphi = e \cdot \Phi$$

(2) The current operator:

(3) For c = 0. The Hamiltonian is :

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The eigenstates of the Hamiltonian are the states which are symmetrical or antisymmetrical.

$$|S_1\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$$

$$|A_1\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle)$$

$$|S_2\rangle = \frac{1}{\sqrt{2}}(|3\rangle + |4\rangle)$$

$$|A_2\rangle = \frac{1}{\sqrt{2}}(|3\rangle - |4\rangle)$$

The energies eigenvalues :

$$E_1 = 1$$
; $E_2 = 1$; $E_3 = -1$; $E_4 = -1$

(4) In order to fined the Hamiltonian in the new basis, we need to find a matrix that takes us from the old basis to the new one.

The new basis is : $\{|S_1\rangle, |S_2\rangle, |A_1\rangle, |A_2\rangle\}$

The transformation matrix is:

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$H_{new} = T^{-1}H_{old}T = \begin{pmatrix} 1 & c & 0 & 0 \\ c & 1 & 0 & 0 \\ 0 & 0 & -1 & -c \\ 0 & 0 & -c & -1 \end{pmatrix}$$

(5) The energies eigenstates of the system is :

$$|E_1\rangle = \frac{1}{\sqrt{2}} \left(|S_1\rangle + |S_2\rangle \right)$$

$$|E_2\rangle = \frac{1}{\sqrt{2}} \left(|S_1\rangle - |S_2\rangle \right)$$

$$|E_3\rangle = \frac{1}{\sqrt{2}}\left(|A_1\rangle + |A_2\rangle\right)$$

$$|E_4\rangle = \frac{1}{\sqrt{2}}\left(|A_1\rangle - |A_2\rangle\right)$$

The energies eigenvalues:

$$E_1 = 1 + c$$
; $E_2 = 1 - c$; $E_3 = -1 - c$; $E_4 = -1 + c$

(6) The energies eigenstates of the system in the standart basis is :

$$|E_1\rangle = \frac{1}{2}(|1\rangle + |2\rangle + |3\rangle + |4\rangle)$$

$$|E_2\rangle = \frac{1}{2}(|1\rangle + |2\rangle - |3\rangle - |4\rangle)$$

$$|E_3\rangle = \frac{1}{2}(|1\rangle - |2\rangle + |3\rangle - |4\rangle)$$

$$|E_4\rangle = \frac{1}{2} \left(|1\rangle - |2\rangle - |3\rangle + |4\rangle \right)$$

$$|\Psi(t=0)\rangle = |1\rangle = \frac{1}{2}(|E_1\rangle + |E_2\rangle + |E_3\rangle + |E_4\rangle)$$

$$|\Psi(t)\rangle = \frac{1}{2} \left(e^{-iE_1t} |E_1\rangle + e^{-iE_2t} |E_2\rangle + e^{-iE_3t} |E_3\rangle + e^{-iE_4t} |E_4\rangle \right)$$

$$A = \langle 1 | \Psi(t) \rangle = \frac{1}{4} \left(e^{-iE_1t} + e^{-iE_2t} + e^{-iE_3t} + e^{-iE_4t} \right) = \cos(t)\cos(ct)$$

$$B = \langle 2|\Psi(t)\rangle = \frac{1}{4} \left(e^{-iE_1t} + e^{-iE_2t} - e^{-iE_3t} - e^{-iE_4t} \right) = -i\sin(t)\cos(ct)$$

$$\left\langle \Psi(t)\left|I\right|\Psi(t)\right\rangle = i(A^*B - B^*A) = 2Im[B^*A] = 2Im[\left\langle 2\left|\Psi(t)\right\rangle^*\left\langle 1\left|\Psi(t)\right\rangle\right\rangle]$$

The current that flow through the ring as a time function is :

$$I_{(t)} = e \cdot \sin(2t)\cos^2(ct)$$