E138: system with three sites

Submitted by: Yogev dahan

The problem:

A system with three sites described by the hamiltonian

$$
\hat{\mathcal{H}}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

and the position matrix:

$$
\hat{\mathcal{X}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

. The purpose of this problem is to find the probability $P(t)$ to find the particle at site left after time t and the current as a function of t.
(1) Write the Hamiltonian if we add a magnetic flux Φ through the ring that connects the right site to the left.
(2) Define the current operator using the formula $I=-\frac{d H}{d \phi}$.
(3) Write in the standard basis the eigenstates and the energies eigenvalues.note that the hamiltonian is symetrical
(4) Calculate the probability $P(t)$ to find the particle in the left site ufter a while.
(5) Calculate the current $\langle I\rangle_{t}$ that flow through the ring.

The solution:

(1) The Hamiltonian is

$$
\hat{\mathcal{H}}=\left(\begin{array}{ccc}
2 & -1 & -\mathrm{e}^{-i \phi} \\
-1 & 2 & -1 \\
-\mathrm{e}^{i \phi} & -1 & 2
\end{array}\right)
$$

and the phase is $\phi=e \Phi$
(2) The current when $\Phi=0$ is:

$$
I=-\frac{d H}{d \Phi}=e\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right)
$$

(3)The momentum eigenvalues are: $k_{0}=0, k_{+}=\frac{2 \pi}{3}, k_{-}=-\frac{2 \pi}{3}$ and the eigenstates are (because the hamiltonian is symmetrical to translations we have S and antiS solutions):

$$
\left|k_{0}\right\rangle=\frac{1}{\sqrt{3}}(|0\rangle+|1\rangle+|2\rangle)
$$

$$
\begin{align*}
& \left|k_{+}\right\rangle=\frac{1}{\sqrt{3}}\left(|0\rangle+\mathrm{e}^{i \frac{2 \pi}{3}}|1\rangle+\mathrm{e}^{-i \frac{2 \pi}{3}}|2\rangle\right) \\
& \left|k_{-}\right\rangle=\frac{1}{\sqrt{3}}\left(|0\rangle+\mathrm{e}^{-i \frac{2 \pi}{3}}|1\rangle+\mathrm{e}^{i \frac{2 \pi}{3}}|2\rangle\right)
\end{align*}
$$

and the energies are:

$$
\begin{aligned}
& E_{0}=0 \\
& E_{+}=3 \\
& E_{-}=3
\end{aligned}
$$

(4) The probability to find the particle at site left after time t is:

$$
\psi(t)=\frac{1}{\sqrt{3}}\left(\left|k_{0}\right\rangle+\mathrm{e}^{-i \omega t}\left|k_{+}\right\rangle+\mathrm{e}^{-i \omega t}\left|k_{-}\right\rangle\right)
$$

where $\omega=E_{+}-E_{0}=3$.
With some algebra we get :

$$
\begin{aligned}
& P(t)=|\langle 0 \mid \psi(t)\rangle|^{2}=\left|\frac{1}{\sqrt{3}}\left(\left\langle 0 \mid k_{0}\right\rangle+\mathrm{e}^{-i \omega t}\left\langle 0 \mid k_{+}\right\rangle+\mathrm{e}^{-i \omega t}\left\langle 0 \mid k_{-}\right\rangle\right)\right|^{2}=\left|\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}+\mathrm{e}^{-i \omega t} \frac{1}{\sqrt{3}}+\mathrm{e}^{-i \omega t} \frac{1}{\sqrt{3}}\right)\right|^{2} \\
= & \frac{1}{9}(5+4 \cos (\omega t))
\end{aligned}
$$

(5) Using $\psi(t)$ from (4) and the definition of I from (2) we get the current:

$$
\begin{aligned}
& \psi_{0}=\langle 0 \mid \psi(t)\rangle=\frac{1}{3}\left(1+\mathrm{e}^{-i \omega t}+\mathrm{e}^{-i \omega t}\right) \\
& \psi_{2}=\langle 2 \mid \psi(t)\rangle=\frac{1}{3}\left(1+\mathrm{e}^{-i \omega t-i \frac{2 \pi}{3}}+\mathrm{e}^{-i \omega t+i \frac{2 \pi}{3}}\right) \\
& \langle I\rangle_{t}=\langle\psi(t)| I|\psi(t)\rangle=e\left(-i \psi_{0} * \psi_{2}+i \psi_{2} * \psi_{0}\right)=\frac{2}{3} e \sin \omega t
\end{aligned}
$$

