E136: A three site system

Submitted by: Eitan Rothstein

The problem:

A three site system is descibed with the standard base $|1\rangle,|0\rangle,|-1\rangle$ through the hamiltonian

$$
\mathcal{H}=\left(\begin{array}{lll}
0 & c & 1 \\
c & u & c \\
1 & c & 0
\end{array}\right)
$$

assume that the site in the center $|0\rangle$ is disconnected $(c=0)$.
(1) Using the standard base write the eigenstates $|S\rangle,\left|S_{0}\right\rangle,|A\rangle$ and their eigenvalues.
(2) Write the hamiltonian using the new base that you have found.
from now on assume that $u=1$ and $c \neq 0$.
(3) Write the eigenvalues E_{1}, E_{2}, E_{3}, and the eigenstates $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle$ of the system as a superposition of the states $|S\rangle,\left|S_{0}\right\rangle,|A\rangle$.
(4) Write the new eigenvalues using the standard base.
(5) What is the probobilty to find the partice in the state $|0\rangle$ after a time interval t if it is prepered at time $t=0$ in the state $|-1\rangle$.
(6) What is the probobilty to find the partice in the state $|0\rangle$ after a time interval t if it is prepered at time $t=0$ in the state $|A\rangle$.

The solution:

(1) The eigenstates $|S\rangle,\left|S_{0}\right\rangle,|A\rangle$ are:

$$
\begin{aligned}
& |S\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \\
& \left|S_{0}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& |A\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

The eigenvalues are:

$$
\begin{aligned}
& \mathcal{H}|S\rangle=\mid S \\
& \mathcal{H}\left|S_{0}\right\rangle=u\left|S_{0}\right\rangle \\
& \mathcal{H}|A\rangle=-\mid A
\end{aligned}
$$

(2) The new hamiltonian is:

$$
\widetilde{\mathcal{H}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & u & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(3) Let us operate the hamiltonian on the states $|S\rangle,\left|S_{0}\right\rangle,|A\rangle$:

$$
\begin{aligned}
& \mathcal{H}|S\rangle=|S\rangle+\sqrt{2} c\left|S_{0}\right\rangle \\
& \mathcal{H}\left|S_{0}\right\rangle=\sqrt{2} c|S\rangle+\left|S_{0}\right\rangle \\
& \mathcal{H}|A\rangle=-|A\rangle
\end{aligned}
$$

Now we can write the hamiltonian using the base $|S\rangle,\left|S_{0}\right\rangle,|A\rangle$ as a block diagonal matrix:

$$
\widetilde{\mathcal{H}}=\left(\begin{array}{ccc}
1 & \sqrt{2} c & 0 \\
\sqrt{2} c & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

The eigenstates $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle$ are:

$$
\begin{aligned}
& \left|E_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(|S\rangle+\left|S_{0}\right\rangle\right) \\
& \left|E_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|S\rangle-\left|S_{0}\right\rangle\right) \\
& \left|E_{3}\right\rangle=|A\rangle
\end{aligned}
$$

The eigenvalues are:

$$
\begin{aligned}
& \widetilde{\mathcal{H}}\left|E_{1}\right\rangle=(1+\sqrt{2} c)\left|E_{1}\right\rangle \\
& \widetilde{\mathcal{H}}\left|E_{2}\right\rangle=(1-\sqrt{2} c)\left|E_{2}\right\rangle \\
& \widetilde{\mathcal{H}}\left|E_{3}\right\rangle=-\left|E_{3}\right\rangle
\end{aligned}
$$

(4) The eigenstates $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle$ writen in the standard base are:

$$
\begin{aligned}
& \left|E_{1}\right\rangle=\frac{1}{2}(|1\rangle+\sqrt{2}|0\rangle+|-1\rangle) \\
& \left|E_{2}\right\rangle=\frac{1}{2}(|1\rangle-\sqrt{2}|0\rangle+|-1\rangle) \\
& \left|E_{3}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|-1\rangle)
\end{aligned}
$$

(5) Let us write the standard base using $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle$

$$
|1\rangle=\frac{1}{2}\left(\left|E_{1}\right\rangle+\left|E_{2}\right\rangle+\sqrt{2}\left|E_{3}\right\rangle\right)
$$

$$
\begin{aligned}
& |0\rangle=\frac{1}{\sqrt{2}}\left(\left|E_{1}\right\rangle-\left|E_{2}\right\rangle\right) \\
& |-1\rangle=\frac{1}{2}\left(\left|E_{1}\right\rangle+\left|E_{2}\right\rangle-\sqrt{2}\left|E_{3}\right\rangle\right)
\end{aligned}
$$

We know that at $t=0$ the state of the particle is:

$$
\Psi_{(t=0)}=|-1\rangle
$$

Then the state of the particle, after time t will be:

$$
\Psi_{(t)}=\frac{1}{2}\left(e^{-\left(i E_{1} t\right)}\left|E_{1}\right\rangle+e^{-\left(i E_{2} t\right)}\left|E_{2}\right\rangle-\sqrt{2} e^{-\left(i E_{3} t\right)}\left|E_{3}\right\rangle\right)=\frac{1}{2}\left(e^{-i(1+\sqrt{2} c) t}\left|E_{1}\right\rangle+e^{-i(1-\sqrt{2} c) t}\left|E_{2}\right\rangle-\sqrt{2} e^{i t} 2\left|E_{3}\right\rangle\right)
$$

The probobilty of finding the particle in state $|0\rangle$ after a time interval t is:

$$
\left|\left\langle x=0 \mid \Psi_{(t)}\right\rangle\right|^{2}=\left|\frac{1}{2^{\frac{3}{2}}}\left(e^{-i(1+\sqrt{2} c) t}-e^{-i(1-\sqrt{2} c) t}\right)\right|^{2}=\frac{1}{2} \sin ^{2}(\sqrt{2} c t)
$$

(6) The state $|A\rangle$ is an eigenstate of the hamiltonian, and therefore it is a stationary stae which we know is a superposition of states $|1\rangle$ and $|-1\rangle$. Therefore the probobilty of finding the particle at state $|0\rangle$ is zero.

