Ex1346: A particle in a double well coupeld to a higher level

Submitted by: Assaf Shocher And Yam Kushinsky

The problem:

Assume a particle in a symmetric double well, in which the hopping amplitude from site " 1 " to site $" 2 "$ is c_{0}. In addition, assume a site " 0 " with the potential energy ϵ_{0} which is much greater than c_{1} and c_{2} the hopping amplitudes from " 0 " to " 1 " and " 2 " respectively. The main goal is to find the effective 2X2 Hamiltonian, that describes the particle in the double well. To achieve the main goal, one must work in a new basis consists of quantum states "C" and " D " which are superpositions of the states " 1 " and " 2 ". In sections 1-3, assume hopping amplitude between sites $c_{0}=0$.

1. Define a dark state " D ", who's coupling to the state " 0 " is zero.
2. Define a state "C" orthogonal to "D" and find the coupling

$$
\langle 0| H|C\rangle
$$

3. Determine the energies of the states "C" and "D" using perturbation theory.
4. Find the effective 2X2 Hamiltonian that describes the particle in the standard basis.

5 . For which value of c 0 , the particle's eigen state would be located in a single site?

Guidance:

- The answer at section 3 defines an effective Hamiltonian

$$
\hat{\mathcal{H}}=\left(\begin{array}{cc}
E_{D} & 0 \\
0 & E_{C}
\end{array}\right)
$$

- The answer at section 4 is the same Hamiltonian in the standard basis, represented by a non diagonal matrix.
- At section 4 the coupling c_{0} needs to be added to the Hamiltonian.
- the answer at section 5 is derived from observing the Hamiltonian found at section 4.

The solution:

(1) The Hamiltonian is:

$$
\hat{\mathcal{H}}=\left(\begin{array}{ccc}
\epsilon_{0} & c_{1} & c_{2} \\
c_{1} & 0 & 0 \\
c_{2} & 0 & 0
\end{array}\right)
$$

And " D " is a superposition of " 1 " and " 2 ":

$$
|D\rangle=a|1\rangle+b|2\rangle
$$

For no coupling, we demand:

$$
0=\langle 0| H|D\rangle=a\langle 0| H|1\rangle+b\langle 0| H|2\rangle
$$

thus

$$
\text { (i) } a c_{1}+b c_{2}=0
$$

Demanding a normalized vector requires:

$$
\text { (ii) } a^{2}+b^{2}=1
$$

By solving the two equation system we get

$$
|D\rangle=\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(c_{2}|1\rangle-c_{1}|2\rangle\right)=\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\binom{c_{2}}{-c_{1}}
$$

(2) For orthogonality:

$$
\langle C \mid D\rangle=0
$$

If we chose

$$
|C\rangle=\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(c_{1}|1\rangle+c_{2}|2\rangle\right)=\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\binom{c_{1}}{c_{2}}
$$

Then

$$
\langle C \mid D\rangle=\frac{1}{c_{1}^{2}+c_{2}^{2}}\left(c_{1} c_{2}-c_{1} c_{2}\right)=0
$$

As required.
To find the coupling of "C" to "0", we calculate:

$$
\langle 0| H|C\rangle=\langle 0| H \left\lvert\,\left(\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(c_{1}|1\rangle+c_{2}|2\rangle\right)\right)=\frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(c_{1}\langle 0| H|1\rangle+c_{2}\langle 0| H|2\rangle\right)\right.
$$

And finaly, recalling the known coupling of " 0 " to " 1 " and " 2 ":

$$
\langle 0| H|C\rangle=\sqrt{c_{1}^{2}+c_{2}^{2}}
$$

(3) The Hamiltonian in the new basis can be written as a sum of the perturbated and unperturbated parts

$$
H_{0, C, D}=\left(\begin{array}{ccc}
\epsilon_{0} & \sqrt{c_{1}^{2}+c_{2}^{2}} & 0 \\
\sqrt{c_{1}^{2}+c_{2}^{2}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\epsilon_{0} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & \sqrt{c_{1}^{2}+c_{2}^{2}} & 0 \\
\sqrt{c_{1}^{2}+c_{2}^{2}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Since we only have a perturbation for the upper left block of the Hamiltonian, We will use perturbation theory just for this block:

$$
H_{0, c}=\left(\begin{array}{cc}
\epsilon_{0} & 0 \\
0 & 0
\end{array}\right)+\sqrt{c_{1}^{2}+c_{2}^{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Since $c_{1}, c_{2} \ll \epsilon_{0}$, perturbation theory method converges and we get

$$
E_{d}{ }^{[0]}=0
$$

$$
\begin{aligned}
& E_{d}{ }^{[1]}=0 \\
& E_{d}{ }^{[2]}=0 \\
& E_{d}=E_{d}{ }^{[0]}+E_{d}{ }^{[1]}+E_{d}{ }^{[2]}=0 \\
& E_{c}{ }^{[0]}=0 \\
& E_{c}^{[1]}=0 \\
& E_{c}^{[2]}=c_{1}^{2}+c_{2}^{2} \\
& E_{c}=E_{c}{ }^{[0]}+E_{c}^{[1]}+E_{c}{ }^{[2]}=-\frac{c_{1}^{2}+c_{2}^{2}}{\epsilon_{0}} \\
& E_{0}{ }^{[0]}=\epsilon_{0} \\
& E_{0}{ }^{[1]}=0 \\
& E_{0}{ }^{[2]}=\frac{c_{1}^{2}+c_{2}^{2}}{\epsilon_{0}} \\
& E_{0}=E_{0}^{[0]}+E_{0}{ }^{[1]}+E_{0}{ }^{[2]}=\epsilon_{0}+\frac{c_{1}^{2}+c_{2}^{2}}{\epsilon_{0}}
\end{aligned}
$$

(4) Let A and B define the standard basis and the new basis respectively.

$$
\begin{aligned}
& A=\{|0\rangle,|1\rangle,|2\rangle\} \\
& B=\{|0\rangle,|C\rangle,|D\rangle\}
\end{aligned}
$$

$$
\left\langle A_{i}\right| H\left|A_{j}\right\rangle=\left\langle A_{i} \mid B_{n}\right\rangle\left\langle B_{i}\right| H\left|B_{j}\right\rangle\left\langle B_{m} \mid A_{j}\right\rangle
$$

where $\left\langle B_{i}\right| H\left|B_{j}\right\rangle$ is an element in the diagonal Hamiltonian we calculeted for " D "," C ","0" basis, and $\left|B_{j}\right\rangle\left\langle B_{m}\right|$ is the projection operator to the B basis.
Notice $T=\left|B_{n}\right\rangle\left\langle B_{m}\right|$ is a unitary and Hermitian operator:

$$
\begin{aligned}
& T=T^{\dagger} \\
& T T^{\dagger}=\mathbf{1}
\end{aligned}
$$

Therefore

$$
T=T^{-1}
$$

And

$$
\begin{aligned}
H= & \frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(\begin{array}{ccc}
\sqrt{c_{1}^{2}+c_{2}^{2}} & 0 & 0 \\
0 & c_{1} & c_{2} \\
0 & c_{2} & -c_{1}
\end{array}\right) \frac{c_{1}^{2}+c_{2}^{2}}{\epsilon_{0}}\left(\begin{array}{cc}
1+\frac{\epsilon_{0}^{2}}{c_{1}^{2}+c_{2}^{2}} & 0 \\
0 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right) \frac{1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\left(\begin{array}{ccc}
\sqrt{c_{1}^{2}+c_{2}^{2}} & 0 & 0 \\
0 & c_{1} & c_{2} \\
0 & c_{2} & -c_{1}
\end{array}\right) \\
& H_{1,2}=\frac{1}{\epsilon_{0}}\left(\begin{array}{cc}
-c_{1}^{2} & -c_{1} c_{2} \\
-c_{1} c_{2} & -c_{2}^{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & c_{0} \\
c_{0} & 0
\end{array}\right)
\end{aligned}
$$

$$
H_{1,2}=\frac{1}{\epsilon_{0}}\left(\begin{array}{cc}
-c_{1}^{2} & -c_{1} c_{2}+\epsilon_{0} c_{0} \\
-c_{1} c_{2}+\epsilon_{0} c_{0} & -c_{2}^{2}
\end{array}\right)
$$

(5) To make the eigen states be single sites we demand that the Hamiltonian will be diagonal for the standard basis. (the eigen vectors of the standard basis are single sites).
Thus-

$$
c_{0}=\frac{c_{1} c_{2}}{\epsilon_{0}}
$$

