Ex1328: Transmission Through a Junction in a One-Dimensional Lattice

Submitted by: Elad Benjamin and Ido Michealovich

The question:

In this problem it is required to find the transmission coefficient $g=|t|^{2}$ of a particle of momentum k through a junction in a one-dimensional lattice.
The given parameters are: Lattice constant a, "hopping" frequency between nearest neighbors c_{0} and "hopping" frequency between the $n= \pm 1$ sites c_{J}.
(1) In this section we assume an unperturbated lattice, where instead of a junction we have another site $n=0$. Write down the unperturbated Hamiltonian H_{0} and the velocity operator v as a function of the momentum operator p.
(2) Write down the matrix $H_{n, m}$ representing the perturbated Hamiltonian. It is sufficient to write the $4 x 4$ sub-matrix for $n, m=-2,-1,1,2$.
(3) Write a system of two equations for the transmission and reflection amplitudes (r, t) of the junction.
(4) Write an expression for the transmission coefficient g as a function of k.
(5) For a very large of very small $g \propto\left|v_{k}\right|^{2}$, write down the proportion coefficients.

The solution:

$H_{0}=\left(\begin{array}{ccccc}\ddots & \ddots & \ddots & & \\ \ddots & 0 & c_{0} & 0 & \\ \ddots & c_{0} & 0 & c_{0} & \ddots \\ & 0 & c_{0} & 0 & \ddots \\ & & \ddots & \ddots & \ddots\end{array}\right)$
We notice that:
$H_{0}=c_{0}\left(D+D^{\dagger}\right)=2 c_{0}\left(\frac{e^{-i p a}+e^{+i p a}}{2}\right)=2 c_{0} \cos (a p)$
To find v :
$v=\frac{d x}{d t}=i\left[H_{0}, x\right]=-i\left[x, 2 c_{0} \cos (a p)\right]=-2 c_{0} i(-a \cdot \sin (a p))[x, p]=-2 c_{0} a \cdot \sin (a p)$
(2)
$H=\left(\begin{array}{cccc}0 & c_{0} & 0 & 0 \\ c_{0} & 0 & c_{J} & 0 \\ 0 & c_{J} & 0 & c_{0} \\ 0 & 0 & c_{0} & 0\end{array}\right)$

We assume as guided:

$$
\begin{aligned}
& \psi_{n}^{L}=e^{i k a n}+r e^{-i k a n} \\
& \psi_{n}^{R}=t e^{i k a n}
\end{aligned}
$$

From $H \psi=E_{k} \psi$ we get:

$$
\left(\begin{array}{cccc}
0 & c_{0} & 0 & 0 \\
c_{0} & 0 & c_{J} & 0 \\
0 & c_{J} & 0 & c_{0} \\
0 & 0 & c_{0} & 0
\end{array}\right)\left(\begin{array}{c}
\psi_{-2} \\
\psi_{-1} \\
\psi_{1} \\
\psi_{2}
\end{array}\right)=E_{k}\left(\begin{array}{c}
\psi_{-2} \\
\psi_{-1} \\
\psi_{1} \\
\psi_{2}
\end{array}\right)
$$

We obtain the set of 2 equations:
$c_{0} \psi_{-2}+c_{J} \psi_{1}=E_{k} \psi_{-1}$
$c_{J} \psi_{-1}+c_{0} \psi_{2}=E_{k} \psi_{1}$
(Notice that we cannot use the first and last equations since the matrix is in fact infinite and they are incorrect)
where $E_{k}=2 c_{0} \cos (a k)=c_{0}\left(e^{i k a}+e^{-i k a}\right)$
(Same as in the unperturbated hamiltonian).
Inserting the assumed wave functions and energy into the equations, we get:

$$
\begin{align*}
& c_{0}\left(e^{-2 i k a}+r e^{2 i k a}\right)+c_{J}\left(t e^{i k a}\right)=c_{0}\left(e^{i k a}+e^{-i k a}\right)\left(e^{-i k a}+r e^{i k a}\right) \\
& c_{J}\left(e^{-i k a}+r e^{i k a}\right)+c_{0}\left(t e^{2 i k a}\right)=c_{0}\left(e^{i k a}+e^{-i k a}\right)\left(t e^{i k a}\right) \\
& \Downarrow \\
& \frac{c_{J}}{c_{0}} t e^{i k a}=1+r \\
& \frac{c_{J}}{c_{0}}\left(e^{-i k a}+r e^{i k a}\right)=t \tag{4}
\end{align*}
$$

Solving for t from the above system of 2 equations (isolating r in both and equating them) we get:

$$
\begin{align*}
& t=\frac{2 i c_{0} c_{J} \sin (k a)}{c_{J}^{2} e^{2 i k a}-c_{0}^{2}} \\
& \Downarrow \\
& |t|^{2}=\frac{4 c_{0}^{2} c_{J}^{2} \sin ^{2}(k a)}{\left|c_{J}^{2} e^{2 i k a}-c_{0}^{2}\right|^{2}}=\frac{c_{J}^{2} v_{k}^{2} / a^{2}}{\left|c_{J}^{2} e^{2 i k a}-c_{0}^{2}\right|^{2}} \tag{5}
\end{align*}
$$

For very large c_{J} :
$|t|^{2}=\frac{1}{c_{J}^{2}} \frac{1}{a^{2}} \cdot v_{k}^{2}$
For very small c_{J} :
$|t|^{2}=\frac{c_{J}^{2}}{c_{0}^{4}} \frac{1}{a^{2}} \cdot v_{k}^{2}$

