latexsym amsmath amssymb bm

E114: Representation of Operators

Submitted by: Gal Aviv

The problem :

In a certain basis the operators A and B are represented by the square matrix:

$$
\begin{aligned}
\mathcal{A} & =\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right) \\
\mathcal{B} & =\left(\begin{array}{ccc}
-b & 0 & 0 \\
0 & 0 & i b \\
0 & -i b & 0
\end{array}\right)
\end{aligned}
$$

(1) Does B have eigenvalue degeneracy?
(2) Show that the operators A and B commute.
(3) Find a new basis where the operators A and B are diagonal.

The solution :

(1) The operator B after digaonalization is:

$$
\mathcal{B}=\left(\begin{array}{ccc}
-b & 0 & 0 \\
0 & -b & 0 \\
0 & 0 & b
\end{array}\right)
$$

That mean \mathcal{B} has second level of degeneration.
(2) To show that the operators A and B commute we need to show that $[\widehat{A}, \widehat{B}]=\widehat{A} \widehat{B}-\widehat{B} \widehat{A}=0$

By calculating simple matrix multipcation we get the zero value.
Therefore the operators commute.
(3) To digonalise first we need to find the eigenvectors.
$\left\lvert\, 1>\rightarrow\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right.$
$\left\lvert\, 2>\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ i / \sqrt{2}\end{array}\right)\right.$
$\left\lvert\, 3>\mapsto\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -i / \sqrt{2}\end{array}\right)\right.$
Matrix T is Unitary therefor $\mathrm{T}^{-1}=T^{\dagger}$
By using the transformation elements:
$\widetilde{B}=T^{\dagger} \mathcal{B} T$
We diagonalize B in the new basis
While

$$
\mathcal{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & i / \sqrt{2} & -i / \sqrt{2}
\end{array}\right)
$$

and

$$
\mathcal{T}^{\dagger}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & -i / \sqrt{2} \\
0 & 1 / \sqrt{2} & i / \sqrt{2}
\end{array}\right)
$$

The \mathcal{T} Matrix changes \mathcal{B} base to the diagonal one:
$\widetilde{B}=T^{\dagger} \mathcal{B} T$
And due to the degeneracy in \mathcal{B}, a linear combination of the eigenvectors of \mathcal{B} will digonalise \mathcal{A}.
However, by applying $T^{\dagger} \mathcal{A} T$ We see that \mathcal{A} Remains the same in the new basis
$\widetilde{A}=T^{\dagger} \mathcal{A} T=\mathcal{A}$
Consequently we have demonstrated that \mathcal{A} and \mathcal{B} are both diagonal in the same basis.

