E106: Base translation

Submitted by: Harel Frish

The problem:

Given two different bases:

$$
\left\{\left|\eta_{\mathrm{i}}\right\rangle\right\} \quad \text { and } \quad\left\{\left|\zeta_{\mathrm{i}}\right\rangle\right\}
$$

with the relation:

$$
\left|\eta_{1}\right\rangle=\mathrm{a}\left|\zeta_{1}\right\rangle+\mathrm{b}\left|\zeta_{2}\right\rangle \quad \text { and } \quad\left|\eta_{2}\right\rangle=\mathrm{a}\left|\zeta_{1}\right\rangle-\mathrm{b}\left|\zeta_{2}\right\rangle
$$

(1) What should be the condition on a and b so that the base will be ortonormaly.
(2) Express this $\left|\mathrm{a}_{1}\right\rangle=3\left|\zeta_{1}\right\rangle+7\left|\zeta_{2}\right\rangle$ relation in the $\left|\eta_{i}\right\rangle$ base.

The solution:

(1)

$$
\begin{aligned}
& \left|\eta_{1}\right\rangle=\mathrm{a}\left|\zeta_{1}\right\rangle+\mathrm{b}\left|\zeta_{2}\right\rangle \\
& \left|\eta_{2}\right\rangle=\mathrm{a}\left|\zeta_{1}\right\rangle-\mathrm{b}\left|\zeta_{2}\right\rangle
\end{aligned}
$$

We will suppose that $\left|\zeta_{1}\right\rangle$ and $\left|\zeta_{2}\right\rangle$ are unit vectors (it's the base) so:

$$
\left|\eta_{\alpha}\right\rangle=\sum_{j} T_{j \alpha}\left|\zeta_{j}\right\rangle
$$

means:

$$
T_{j, \alpha}=\left\langle\zeta_{j} \mid \eta_{\alpha}\right\rangle=\left(\begin{array}{cc}
a & a \\
b & -b
\end{array}\right)
$$

For vector $\overrightarrow{\eta_{1}}$ and $\overrightarrow{\eta_{2}}$ to be ortonormaly, we should demand that $T^{+} T=I$.

From this condition we get:

$$
\begin{aligned}
& |a|^{2}=\frac{1}{2} \\
& |b|^{2}=\frac{1}{2}
\end{aligned}
$$

(2) The transformation matrix is:

$$
S=T^{-1}=T^{\dagger}=\left(\begin{array}{cc}
a^{*} & b^{*} \\
a^{*} & -b^{*}
\end{array}\right)
$$

The coefficient vector of $\left|a_{1}\right\rangle$ is:

$$
\Psi=\binom{3}{7}
$$

Then the coefficient vector in the new basis will be:

$$
\tilde{\Psi}=S \Psi=\binom{3 a^{*}+7 b^{*}}{3 a^{*}-7 b^{*}}
$$

