E106: Base translation Submitted by: Harel Frish

The problem:

Given two different bases:

 $\{|\eta_i\rangle\}$ and $\{|\zeta_i\rangle\}$

with the relation:

 $|\eta_1\rangle = a|\zeta_1\rangle + b|\zeta_2\rangle$ and $|\eta_2\rangle = a|\zeta_1\rangle - b|\zeta_2\rangle$

(1) What should be the condition on a and b so that the base will be ortonormaly.

(2) Express this $|a_1\rangle = 3|\zeta_1\rangle + 7|\zeta_2\rangle$ relation in the $|\eta_i\rangle$ base.

The solution:

(1)

```
|\eta_1\rangle = a|\zeta_1\rangle + b|\zeta_2\rangle
```

$$|\eta_2\rangle = a|\zeta_1\rangle - b|\zeta_2\rangle$$

We will suppose that $|\zeta_1\rangle$ and $|\zeta_2\rangle$ are unit vectors (it's the base) so:

$$|\eta_{\alpha}\rangle = \sum_{j} T_{j\alpha} |\zeta_{j}\rangle$$

means:

$$T_{j,\alpha} = \langle \zeta_j | \eta_\alpha \rangle = \begin{pmatrix} a & a \\ b & -b \end{pmatrix}$$

For vector $\vec{\eta_1}$ and $\vec{\eta_2}$ to be ortonormaly, we should demand that $T^+T = I$.

From this condition we get:

$$|a|^2 = \frac{1}{2}$$
$$|b|^2 = \frac{1}{2}$$

(2) The transformation matrix is:

$$S = T^{-1} = T^{\dagger} = \begin{pmatrix} a^* & b^* \\ a^* & -b^* \end{pmatrix}$$

The coefficient vector of $|a_1\rangle$ is:

$$\Psi = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$

Then the coefficient vector in the new basis will be:

$$\tilde{\Psi} = S\Psi = \begin{pmatrix} 3a^* + 7b^* \\ 3a^* - 7b^* \end{pmatrix}$$