E1025: Projector Operators as a Representation Basis

Submitted by: Christine Khripkov

The problem:

The projection operators P^{n} and $P^{n m}$ and $Q^{n m}$ on the N^{2} states $|n\rangle$, and $|n\rangle+|m\rangle$, and $|n\rangle+i|m\rangle$ respectively, form a complete basis for the representations of operators in the N-dimensional Hilbert space. We also define the generalized Pauli matrices:

$$
\begin{aligned}
& X^{n m}=2 P^{n m}-P^{n}-P^{m} \\
& Y^{n m}=2 Q^{n m}-P^{n}-P^{m}
\end{aligned}
$$

Consider the matrix \mathcal{A} which is written in the standard basis $|n\rangle$ as:

$$
\mathcal{A}=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 7 & 2 & i \\
0 & 2 & 5 & 0 \\
0 & -i & 0 & 9
\end{array}\right)
$$

(1) Explain how the P^{n} projectors, together with the generalized Pauli matrices can be used as a convenient basis. Express \mathcal{A} in this basis.
(2) Express \mathcal{A} as a linear combination of the projection operators as defined above.

The solution:

1. The projection operators are represented in the standard basis $\{|n\rangle\}$ by:

$$
\begin{aligned}
& P^{n}=|n\rangle\langle n| \\
& P^{n m}=\frac{1}{\sqrt{2}}(|n\rangle+|m\rangle) \frac{1}{\sqrt{2}}(\langle n|+\langle m|)=\frac{1}{2}(|n\rangle\langle n|+|m\rangle\langle m|+|n\rangle\langle m|+|m\rangle\langle n|) \\
& Q^{n m}=\frac{1}{\sqrt{2}}(|n\rangle+i|m\rangle) \frac{1}{\sqrt{2}}(\langle n|-i\langle m|)=\frac{1}{2}(|n\rangle\langle n|+|m\rangle\langle m|-i|n\rangle\langle m|+i|m\rangle\langle n|)
\end{aligned}
$$

For the 4 -dimentional space, there are 4 different P^{n} operators, 6 different $P^{n m}$, and 6 different $Q^{n m}$, making a total of $N^{2}=16$ basis operators.

While the P^{n} operators have a single diagonal element, the $P^{n m}$ and the $Q^{n m}$ operators have both diagonal and off-diagonal elements. Thus, it is convenient to define a new basis for the N^{2} representation:

$$
\begin{aligned}
& P^{n}=|n\rangle\langle n| \\
& X^{n m}=2 P^{n, m}-P^{n}-P^{m}=|n\rangle\langle m|+|m\rangle\langle n| \\
& Y^{n m}=2 Q^{n, m}-P^{n}-P^{m}=-i|n\rangle\langle m|+i|m\rangle\langle n|
\end{aligned}
$$

In this basis the diagonal and the off-diagonal elements are separated; hence, the matrix \mathcal{A} can be easily decomposed as:

$$
\mathcal{A}=3 P^{1}+7 P^{2}+5 P^{3}+9 P^{4}+2 X^{2,3}-Y^{2,4}
$$

2. The representation in the $\left\{P^{n}, X^{n m}, Y^{n m}\right\}$ basis can be converted to the $\left\{P^{n}, P^{n, m}, Q^{n, m}\right\}$ basis by substituting back the definitions of $X^{n m}$ and $Y^{n m}$:

$$
\begin{aligned}
\mathcal{A} & =3 P^{1}+7 P^{2}+5 P^{3}+9 P^{4}+2\left(2 P^{2,3}-P^{2}-P^{3}\right)-\left(2 Q^{2,4}-P^{2}-P^{4}\right) \\
& =3 P^{1}+6 P^{2}+3 P^{3}+10 P^{4}+4 P^{2,3}-2 Q^{2,4}
\end{aligned}
$$

