E1025: Projector Operators as a Representation Basis

Submitted by: Christine Khripkov

```
Improved phrasing of the problem by DC + remarks
```


The problem:

The projection operators P^{n} and $P^{n m}$ and $Q^{n m}$ on the N^{2} states $|n\rangle$, and $|n\rangle+|m\rangle$, and $|n\rangle+i|m\rangle$ respectively, form a complete basis for the representations of operators in the N-dimensional Hilbert space. We also define the generalized Pauli matrices:

$$
\begin{aligned}
& X^{n m}=2 P^{n m}-P^{n}-P^{m} \\
& Y^{n m}=2 Q^{n m}-P^{n}-P^{m}
\end{aligned}
$$

Consider the matrix \mathcal{A} which is written in the standard basis $|n\rangle$ as:

$$
\mathcal{A}=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 7 & 2 & i \\
0 & 2 & 5 & 0 \\
0 & -i & 0 & 9
\end{array}\right)
$$

(1) Explain how the P^{n} projectors, together with the generalized Pauli matrices can be used as a convenient basis. Express \mathcal{A} in this basis.
(2) Express \mathcal{A} as a linear combination of the projection operators as defined above.

The solution:

DC: missing $1 / \sqrt{2}$ below.

1. The projection operators are represented in the standard basis $\{|n\rangle\}$ by:

$$
\begin{aligned}
& P^{n}=|n\rangle\langle n| \\
& P^{n m}=(|n\rangle+|m\rangle)(\langle n|+\langle m|)=|n\rangle\langle n|+|m\rangle\langle m|+|n\rangle\langle m|+|m\rangle\langle n| \\
& Q^{n m}=(|n\rangle+i|m\rangle)(\langle n|-i\langle m|)=|n\rangle\langle n|+|m\rangle\langle m|-i|n\rangle\langle m|+i|m\rangle\langle n|
\end{aligned}
$$

For the 4 -dimentional space, there are 4 different P^{n} operators, 6 different $P^{n m}$, and 6 different $Q^{n m}$, making a total of $N^{2}=16$ basis operators.

DC: At this point it is useful to define the matrices $X^{n m}$ and $Y^{n m}$ and P^{n}. Then it is very easy to express A using thses matrices. By inspection the result should be:

$$
A=3 P^{1}+7 P^{2}+5 P^{3}+9 P^{4}+2 X^{2,3}-Y^{2,4}
$$

DC: The X and Y matrices are easily expressed uisning the projectors. Results in the next page should be corrected.

Due to the orthonormality relations of the $\{|n\rangle\}$ basis, the matrix elements of the projection operators are either 1 or $\pm i$, with the diagonal elements always taking the value 1 :

$$
\langle k| P^{n, i m}\left|k^{\prime}\right\rangle=\langle k \mid n\rangle\left\langle n \mid k^{\prime}\right\rangle+\langle k \mid m\rangle\left\langle m \mid k^{\prime}\right\rangle-i\langle k \mid n\rangle\left\langle m \mid k^{\prime}\right\rangle+i\langle k \mid m\rangle\left\langle n \mid k^{\prime}\right\rangle
$$

Since \mathcal{A} is Hermitian, it's easy to find the representation in the basis of the projection operators by inspection: the symmetrical real and imaginary off-diagonal elements are matched to the multiples of the operators $P^{n, m}$ and $P^{n, i m}$, respectively, while the diagonal elements are added a -1 for each overlap with the former operators, and are then matched to multiples of the operators P^{n}.

$$
\begin{aligned}
\mathcal{A} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & i \\
0 & 0 & 0 & 0 \\
0 & -i & 0 & 1
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 8
\end{array}\right) \\
\mathcal{A} & =P^{4, i 2}+2 P^{2,3}+3 P^{1}+4 P^{2}+3 P^{3}+8 P^{4}
\end{aligned}
$$

2. The representation in the projection operators is easily converted to representation by the generalized Pauli matrices by using the equation which defines the matrices:

$$
\begin{aligned}
& \sigma_{n}=2 P^{n}-P^{n}-P^{n}=P^{n} \\
& \sigma_{n, m}=2 P^{n, m}-P^{n}-P^{m} \\
& \sigma_{n, i m}=2 P^{n, i m}-P^{n}-P^{m}
\end{aligned}
$$

Thus, the representation in the generalized Pauli matrices is calculated from the result of part 1:

$$
\begin{aligned}
\mathcal{A} & =P^{4, i 2}+2 P^{2,3}+3 P^{1}+4 P^{2}+3 P^{3}+8 P^{4} \\
& =\left(P^{4, i 2}-\frac{1}{2} P^{4}-\frac{1}{2} P^{2}\right)+\left(2 P^{2,3}-P^{2}-P^{3}\right)+3 P^{1}+4 P^{2}+3 P^{3}+8 P^{4} \\
& =\frac{1}{2} \sigma_{4, i 2}+\sigma_{2,3}+3 \sigma_{1}+\frac{11}{2} \sigma_{2}+4 \sigma_{3}+\frac{17}{2} \sigma_{4}
\end{aligned}
$$

