Ex102: Pauli Matrixes

Submitted by: Nir Stein

The problem:

The Pauli Matrixes are defined as:

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where σ_{0} is the unit matrix.
(1) Write these matrixes using Dirac notation, choose a base in which σ_{3} is diagonaled.

We defined: $X=\sum_{i=0}^{3} a_{i} \sigma_{i}$
(2) Express $\operatorname{Tr}\left(\sigma_{i} \mathrm{X}\right)$ and $\operatorname{Tr}(\mathrm{X})$ with a_{i}.
(3) Show (with the help of the Dirac formalizm) that the pauli matrixes along with the unit matrix can be used as a base for the 2×2 Hermitian matrixes.

The solution:

(1) The 2×2 matrixes are two diamentional matrixes. Therefor, we define two ortogonal states (vectors):

$$
|1\rangle=\binom{0}{1}|2\rangle=\binom{1}{0}
$$

To write these matrixes in Dirac notation we will use:

$$
A=\sum_{i, j}|i\rangle A_{i j}\langle j|
$$

This formula is good for any matrix A and also for all σ_{k}, therefor:

$$
\begin{aligned}
& \sigma_{0}=|1\rangle 0\langle 2|+|2\rangle 0\langle 1|+|1\rangle 1\langle 1|+|2\rangle 1\langle 2|=|1\rangle\langle 1|+|2\rangle\langle 2| \\
& \sigma_{1}=|1\rangle 1\langle 2|+|2\rangle 1\langle 1|+|1\rangle 0\langle 1|+|2\rangle 0\langle 2|=|1\rangle\langle 2|+|2\rangle\langle 1| \\
& \sigma_{2}=|1\rangle-i\langle 2|+|2\rangle\langle\langle 1|+\mid 1\rangle 0\langle 1|+|2\rangle 0\langle 2|=-i|1\rangle\langle 2|+i|2\rangle\langle 1| \\
& \sigma_{3}=|1\rangle 1\langle 1|+|2\rangle-1\langle 2|+|1\rangle 0\langle 2|+|2\rangle 0\langle 1|=|1\rangle\langle 1|-|2\rangle\langle 2|
\end{aligned}
$$

Also, we can see that σ_{3} is already diagonaled so the base for it is the same base we chose before. which is:

$$
|1\rangle=\binom{0}{1}|2\rangle=\binom{1}{0}
$$

(2) First, the multiplication table of the $\sigma_{i}(\mathrm{i}=1,2,3)$ is:

$$
\sigma_{i} \sigma_{j}=I \delta_{i j}+i \epsilon_{i j k} \sigma_{k}
$$

which means (for example):

$$
\sigma_{1} \sigma_{2}=\sigma_{3} ; \sigma_{i}^{2}=I ; \sigma_{0} \sigma_{i}=\sigma_{i}
$$

Its also easy to see that

$$
\operatorname{Tr}\left(\sigma_{0}\right)=2 ; \operatorname{Tr}\left(\sigma_{i}\right)=0, i=1,2,3
$$

Now, with the definition of X we get:

$$
\operatorname{Tr}\left(\sigma_{0} X\right)=\operatorname{Tr}\left(\sigma_{0} \sum_{i=0}^{3} a_{i} \sigma_{i}\right)=\operatorname{Tr}\left[\sigma_{0}\left(a_{0} \sigma_{0}+a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}\right)\right]=\operatorname{Tr}\left(a_{0} \sigma_{0} \sigma_{0}\right)=a_{0} \operatorname{Tr}\left(\sigma_{0}\right)=2 a_{0}
$$

We will find all others in the same way. So shortly:

$$
\operatorname{Tr}\left(\sigma_{i} X\right)=a_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{i}\right)=a_{i} \operatorname{Tr}\left(\sigma_{0}\right)=2 a_{i}, i=0,1,2,3
$$

(3) We know that all Hermitian 2×2 matrixes can be writen as a linear combination of four ortogonal matrixes. Also, the Pauli matrixes σ_{i} and the unit 2×2 matrix are all ortogonal. Therefor, all four matrixes can be used as a base for the 2×2 hermitian matrix.

Just for checking, we will take a general hermitian 2×2 matrix and check its Coefficients and whether we can write that matrix as a linear combination of σ_{i} and the unit matrix:

The general hermitian 2×2 matrix is:

$$
\left(\begin{array}{cc}
a & b+i c \\
b-i c & d
\end{array}\right)
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d real.
Also we have

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)=\frac{a}{2}\left(I+\sigma_{3}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right)=\frac{d}{2}\left(I-\sigma_{3}\right),\left(\begin{array}{cc}
0 & b+i c \\
b-i c & 0
\end{array}\right)=\frac{1}{2}\left(b \sigma_{1}+c \sigma_{2}\right)
$$

Therefor, we can write the general 2×2 Hermitian matrix as follows:

$$
\left(\begin{array}{cc}
a & b+i c \\
b-i c & d
\end{array}\right)=\frac{1}{2}(a+d) I+\frac{1}{2} b \sigma_{1}+\frac{1}{2} c \sigma_{2}+\frac{1}{2}(a-d) \sigma_{3}
$$

